Name:		Class:		Date: ID: C				
Ch.11	-Q ²	4W3-Nuclear chemistry- Test						
Multip		Choice choice that best completes the statement or an	ıswer.	s the question.				
	1.	. What is the source of the electrons produced in beta decay?						
		a. an outer energy level	c.	· .				
		b. a valence electron	d.	a neutron				
	2.	The ratio of protons to neutrons in stable isotopes of the lighter elements tends to be approximately						
		a. unpredictable		1:2				
		b. 1:1		2:1				
	3.	3. A particle released during the fission of uranium-235 is a(n)						
		a. gamma ray	c.	neutron				
		b. alpha particle	d.	beta particle				
	4.	The first person to recognize the existence of		·				
		a. Marie Curie		Lise Meitner				
	_	b. Henri Becquerel	d.	Albert Einstein				
	5.	A(n) is a high energy electron.		to account of				
		a. helium nucleus	c.	beta particle				
	_	b. positron	d.	alpha particle				
	0.	Compared to an electron, a positron hasa. different mass and charge	_·	the same mass and charge				
		——————————————————————————————————————						
	7							
	7. Which produces more energynuclear fission or nuclear fusion? a. fusion c. It depends on the reaction.							
		b. They produce the same amount.		fission				
	8.	materials absorb light energy, then release it.						
	0.	a. Radioactive		Phosphorescent				
		b. Transuranium	d.	Nuclear				
	9.	Most radioactive waste is generated in	_					
		a. tokamaks	c.	hospitals				
		b. uranium mines	d.	nuclear reactors				
1	10.	To control a chain reaction, a moderator, such	ı as	is used to slow down neutrons.				
		a. uranium	c.	graphite				
		b. water	d.	the core				
1	11.	Materials that continue to glow in the dark af	ter the	ey have been exposed to light are said to be .				
		a. radioactive	c.	·				
		b. phosphorescent	d.	unstable				
1	12.	Which type of radiation is most penetrating?						
		a. alpha	c.	gamma				

d. beta 13. How much hydrogen-3 will remain after 60 years if the original sample had a mass of 80.0 g and the half-life

c. 2.50 g

d. 5.00 g

b. They are equal.

10.0 g

b. 1.25 g

of hydrogen-3 is 12 years?

Name:					
-------	--	--	--	--	--

 14.	If a neutron begins a nuclear chain reaction, then one product of that reaction must be						
	a. a gamma ray c.	a uranium-235 nucleus					
	b. a neutron d.	a uranium-238 nucleus					
15.	Who of the following was not important in the discovery of radiation?						
	a. Henri Becquerel c.	Pierre Curie					
	b. Neils Bohr d.	Marie Curie					
 16.	$_{92}^{235}$ U and $_{92}^{238}$ U are examples of						
	a. particles of radiation c.	isotopes					
	b. allotropes d.	tracers					
 17.	When $\frac{238}{92}$ U becomes $\frac{234}{90}$ Th, what type of decay has taken place?						
	a. positron c.	alpha					
	b. beta d.	gamma					
18.	Which of the following isotopes is not commonly used for dating objects?						
	a. rubidium-87 c.						
	b. phosphorus-32 d.	potassium-40					
19.	In a reactor, nuclear energy is produced in the						
	a. turbine c.	coolant					
	b. fuel rods d.	moderator					
20.	Which of the following could be dated using carbo	on-14?					
	a. glacial deposits c.						
	b. lava fields d.	a rock					
21.	The most difficult radiation to block out is						
	a. beta particles c.	alpha particles					
	b. visible light rays d.	gamma rays					
22.	Which is the only type of radiation that might penetrate the walls of a house?						
	a. alpha c.	gamma					
	b. beta d.	All will penetrate.					
23.	The greatest source of radiation most humans are exposed to is						
	a. medical X rays c.	radon					
	b. rocks and soil d.	cosmic rays					
 24.	The correct nuclear notation for the isotope oxyge						
	a. ${}^{15}_{8}$ O c.	${}_{8}O^{15}$					
	b. 15 O $_{8}$ d.	8 15					
 25.	When one large nucleus is split into two smaller nuclei, the process is nuclear .						
	a. decay c.	tracing					
	b. fusion d.	fission					