Indicate the answer choice that best completes the statement or answers the question.

1. Find a unit vector **u** with the same direction as $\mathbf{x} = <12, 9>$.

a.
$$3, 4$$
 b. $4, 3$
 $5, 5$
 $5, 5$

 c. $5, 12, 13$
 d. $4, 3$
 $7, 7$

2. Which of the following is the magnitude of $\mathbf{a} = \langle -3, 1 \rangle$? Round to the nearest hundredth if necessary.

Class:

a. -2 b. 3.16 c. 2.45 d. 10

3. Find the dot product of $\mathbf{u} = \langle -7, -6, -4 \rangle$ and $\mathbf{v} = \langle -4, -8, 1 \rangle$. Are \mathbf{u} and \mathbf{v} orthogonal?

a. 72; orthogonal	b. 72; not orthogonal
c462; orthogonal	d462; not orthogonal

4. Find the angle θ between **u** and **v** if $\mathbf{u} = \langle 5, -1, -2 \rangle$ and $\mathbf{v} = \langle 8, 3, -5 \rangle$.

a. 60.1° b. 49.1° c. 150.1° d. 29.9°

5. Consider vectors $\mathbf{u} = \langle 1, 7 \rangle$ and $\mathbf{v} = \langle 3, -4 \rangle$. Write \mathbf{u} as the sum of two orthogonal vectors, one of which is the projection of \mathbf{u} onto \mathbf{v} .

a. <-3, 4> b. <-3, 4>, <6, -8> c. <-3, 4>, <4, 3> d. <4, 3>

6. Find the angle θ between $\mathbf{u} = -\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ and $\mathbf{v} = \mathbf{i} - 5\mathbf{j} + 6\mathbf{k}$.

a. 35.6°	b. 54.4°
c. 144.4°	d. 50.9°

7. An airplane is traveling due east with a velocity of 544 miles per hour. The wind blows at 67 miles per hour at an angle of $S74^{\circ}E$. What is the resultant speed and direction of the plane?

a. 611.4 miles per hour; S6.0°E
b. 608.7 miles per hour; S88.3°E
c. 566.1 miles per hour; S83.5°E
d. 614.4 miles per hour; S1.7°E

8. Find the volume of the parallelepiped with adjacent edges $\mathbf{t} = 9\mathbf{j} - 6\mathbf{j} + 2\mathbf{k}$, $\mathbf{u} = \mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $\mathbf{v} = -2\mathbf{i} - 10\mathbf{j} + 5\mathbf{k}$.

a. 209 cubic units	b. 53 cubic units
c. 11 cubic units	d. 267 cubic units

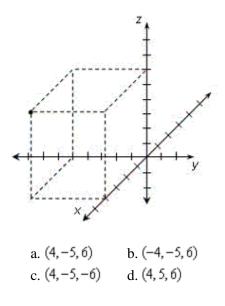
Name:

a. 88.10° b. 260.54° c. 170.54° d. 80.54°

10. Find the dot product of $\mathbf{u} = \langle -10, -2, 6 \rangle$ and $\mathbf{v} = \langle 6, -4, 7 \rangle$. Are \mathbf{u} and \mathbf{v} orthogonal?

a. –10; not orthogonal	b. –10; orthogonal
c. 312; orthogonal	d. 312; not orthogonal

11. Find the magnitude of \overrightarrow{AB} with initial point A(-2, 1) and terminal point B(-1, 6).


a. √22 ≈ 3.099	b. √ <u>33</u> ≈ 7.099
c. √ <mark>28</mark> ≈ 6.099	d. <u>√26</u> ≈ 5.099

- 12. Find the component form of \overrightarrow{AB} with initial point A(-8, -1) and terminal point B(7, 5).
 - a. <5, 17> b. <15, 6> c. <16, 5> d. <16, 11>

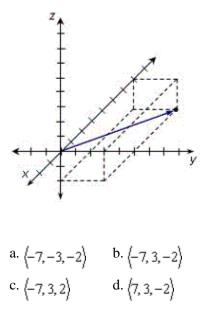
13. Find the magnitude of \overrightarrow{AB} with initial point A(-1, 1) and terminal point B(1, -1).

a. √8 ≈ 2.8284	b. √4 ≈ 0.8284
c. √15 ≈ 4.8284	d. √10 ≈ 3.8284

14. Which of the following points is shown in the graph below?

Class:

Precalculus-G11-Ch.8-H.W


15. Find the resultant of the pair of vectors shown below. State the magnitude of the resultant in centimeters and its direction relative to the horizontal.

a. 3.8 cm, 148° b. 4.7 cm, 148° c. 3.8 cm, 212° d. 3.8 cm, 58°

У

x

16. Which of the following vectors is shown in the graph below?

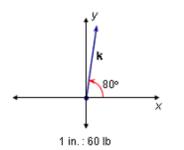
17. Use a metric ruler and a protractor to find $\vec{a} - \vec{b}$. Then find the magnitude and amplitude of the resultant.

_____135° \overline{b} κ

a. 6 cm, 41° b. 4 cm, 36° c. 2 cm, 31° d. 7 cm, 38°

Class:

Precalculus-G11-Ch.8-H.W

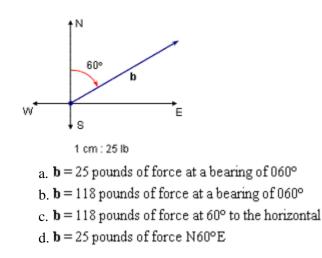

18. Use a metric ruler and a protractor to find $\vec{a} + 2\vec{b}$. Then find the magnitude and amplitude of the resultant.

a. 7.4 cm, 15° b. 4.4 cm, 13° c. 2.4 cm, 8° d. 6.4 cm, 18°

19. Find the magnitude of \overline{WX} for W(-4, 9, -1) and X(9, -8, -2).

a. 451 b. $3\sqrt{51}$ c. $\sqrt{451}$ d. 454

20. Use a ruler to determine which of the following descriptions corresponds to the arrow diagram shown below.


a. $\mathbf{k} = 68$ pounds of force at 80° to the horizontal

b. $\mathbf{k} = 60$ pounds of force at 80° to the horizontal

c. $\mathbf{k} = 68$ pounds of force at a true bearing of 80°

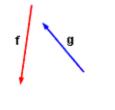
d. $\mathbf{k} = 72$ pounds of force at a bearing of 080°

21. Use a ruler to determine which of the following descriptions corresponds to the arrow diagram shown below.

22. Which of the following represents a vector quantity?

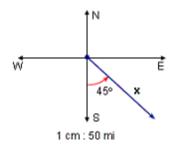
a. an athlete running 5.1 meters per second

b. a car traveling at a speed of 57 miles per hour


c. wind blowing at 3 knots

d. a skydiver falling straight down at 58 kilometers per hour

23. If **u** = <9, -2, -5> and **v** = <-2, 5, 5>, find 3**u** - 2**v**.


a. <-21, -10, 36> b. <36, -27, -10> c. <31, -16, -25> d. <30, -15, -27>

24. Find the resultant of the pair of vectors shown below. State the magnitude of the resultant in centimeters and its direction relative to the horizontal.

a. 4.0 cm, 21	0° b.2.3 cm, 98°
c. 2.3 cm, 30	d. 2.3 cm, 210°

25. Use a ruler to determine which of the following descriptions corresponds to the arrow diagram shown below.

a. $\mathbf{x} = 50$ miles per hour at a bearing of 045°

b. $\mathbf{x} = 170$ miles per hour at a bearing of 045°

c. $\mathbf{x} = 50$ miles per hour at a bearing of S45°E

d. $\mathbf{x} = 170$ miles per hour at a bearing of S45°E

26. Which of the following points is shown in the graph below?

a. (-5, 2, 3) b. (-5, 2, -3)

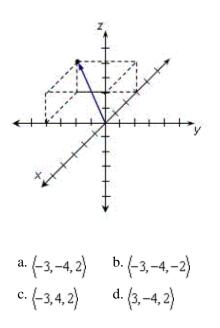
a. (-5, 2, -3)b. (-5, 2, -3)c. (5, 2, -3)d. (-5, -2, -3)

27. Find the magnitude of the horizontal and vertical components of a velocity of 18 miles per hour at an angle of 42° with the ground. Round to the nearest whole number.

- a. horizontal component: 13 mph, vertical component: 49 mph
- b. horizontal component: 13 mph, vertical component: 12 mph
- c. horizontal component: 12 mph, vertical component: 13 mph
- d. horizontal component: 63 mph, vertical component: 12 mph

28. A commercial passenger jet is flying with an airspeed of 170 miles per hour on a heading of 048°. If a 28-mile-perhour wind is blowing from a true heading of 134°, determine the velocity and direction of the jet relative to the ground.

a. 171.3 mph, 039°	b. 170.4 mph, 039°
c. 170.4 mph, 077°	d. 174.2 mph, 077°


29. A commercial passenger jet is flying with an airspeed of 131 knots on a heading of 050° . If a 92-knot wind is blowing from a true heading of 125° , determine the velocity and direction of the jet relative to the ground.

a. 139.2 knots, 035°	b. 139.2 knots, 010°
c. 178.5 knots, 035°	d. 150 knots, 010°

Precalculus-G11-Ch.8-H.W

30. Which of the following vectors is shown in the graph below?

