Indicate the answer choice that best completes the statement or answers the question.

1.
$$\cos 2x + \frac{1}{2} = 0$$

a. $\frac{\pi}{6} + 2\pi\pi; \frac{\pi}{3} + 2\pi\pi$
b. $\frac{\pi}{3} + 2\pi\pi; \frac{2\pi}{3} + 2\pi\pi$
c. $\frac{\pi}{3} + \pi\pi; \frac{2\pi}{3} + \pi\pi$
d. $\frac{\pi}{6} + \pi\pi; \frac{\pi}{3} + \pi\pi$

2. An alternating current *i* in amperes in another circuit can be found after *t* seconds using $i = 4 \sin(195^\circ t)$. Rewrite the formula in terms of the difference of two angle measures.

a.
$$4\sin(30^\circ t - 225^\circ t)$$

b. $\frac{1}{4}\sin(225^\circ t - 30^\circ t)$
c. $\frac{1}{4}\sin(30^\circ t - 225^\circ t)$
d. $4\sin(225^\circ t - 30^\circ t)$

c. no solution d. 0

4. Which of the following are the solutions of $\tan^2 x + \sec x = 1$ on the interval $[0, 2\pi)$?

a.
$$\frac{2\pi}{3}, \frac{4\pi}{3}$$
 b. $\frac{2\pi}{3}, \frac{4\pi}{3}, 0$
c. $\frac{\pi}{3}, \frac{5\pi}{3}, 0$ d. $\frac{\pi}{3}, \frac{5\pi}{3}$

5. Solve $\sin \frac{\pi}{2} = \cos \pi$ on the interval [0, 2π).

a.
$$\frac{\pi}{3}, \frac{5\pi}{3}$$
 b. $\pi, \frac{\pi}{6}, \frac{11\pi}{6}$
c. $\pi, \frac{\pi}{3}, \frac{5\pi}{3}$ d. $\frac{\sqrt{2}}{2}$

6. Simplify $\frac{\tan^2 x - 1}{1 - \sec^2 x}$. a. $\cot^2 x + 1$ b. $\cot^2 x - 1$ c. $1 - \cot^2 x$ d. cannot be simplified

7. Find the exact value of $\sin \frac{5\pi}{12} + \sin \frac{\pi}{12}$.

a.
$$-\frac{\sqrt{2}}{2}$$
 b. $-\frac{\sqrt{6}}{2}$
c. $\frac{\sqrt{2}}{2}$ d. $\frac{\sqrt{6}}{2}$

8. Rewrite $\sin 9x \cos 8x$ as a sum or difference.

a.
$$\frac{1}{2} \left[\sin(17x) + \cos(x) \right]$$

b. $\frac{1}{2} \left[\sin(17x) - \sin(17x) \right]$
c. $\frac{1}{2} \left[\sin(17x) + \sin(x) \right]$
d. $\frac{1}{2} \left[\sin(17x) - \sin(x) \right]$

9. Verify which of the following are trigonometric identities.

1)
$$1 + \frac{\cos^2 \theta}{\cot^2 \theta (1 - \sin^2 \theta)} = 12 \sec^2 \theta$$

2) $18\cos \theta \left(\frac{1}{\cos \theta} - \frac{\cot \theta}{\csc \theta}\right) = 18 \sin^2 \theta$

- a. Both the equations are identities.
- b. Only the second equation is an identity.
- c. Only the first equation is an identity.
- d. None of the equations are identities.

10. Simplify $(\cot x - \csc x)(\cot x + \csc x)$

a.
$$-1$$
 b. 1
c. 0 d. $\csc^2 x \cot^2 x$

11. Solve $\sin 2\theta = \sqrt{2} \sin \theta$ on the interval $[0, 2\pi)$.

a.
$$0, \pi, \frac{\pi}{4}$$

b. $0, \pi, \frac{\pi}{4}, \frac{7\pi}{4}$
c. $0, \pi, \frac{3\pi}{4}, \frac{5\pi}{4}$
d. $\frac{3\pi}{2}, \frac{\pi}{2}, \frac{\pi}{4}, \frac{3\pi}{4}$

Powered by Cognero

12. Rewrite $\cos 3x \sin 5x$ as a sum or difference.

a.
$$\frac{1}{2} [\sin(8x) - \cos(-2x)]$$

b. $\frac{1}{2} [\sin(8x) + \sin(-2x)]$
c. $\frac{1}{2} [\sin(8x) - \sin(-2x)]$
d. $\frac{1}{2} [\sin(-2x) - \sin(8x)]$

Class:

Find all solutions of each equation on the interval [0, 360).

13. $\csc x + 1 = \cot x$

a. 0, π b. π c. $\frac{3\pi}{2}$ d. $\frac{\pi}{2}, \frac{3\pi}{2}$

14. Which of the following are the solutions of $\tan^2 x + 2 = 2 \sec x$ on the interval [0, 2π)?

a. $\frac{\pi}{2}, \frac{3\pi}{2}$ b. 0, π c. π d. 0

15. Write $\cos(\arcsin x + \arccos 2x)$ as an algebraic expression of x that does not involve trigonometric functions.

a.
$$2x\sqrt{1-x^2} - x\sqrt{1-4x^2}$$

b. $x\sqrt{1-x^2}$
c. $x\sqrt{1-4x^2} - 2x\sqrt{1-x^2}$
d. $x\sqrt{1-x^2} - x\sqrt{1-2x^2}$

16. Which of the following are the solutions of $\cot^2 x + 2\csc x = -2$ on the interval [0, 2 π)?

a.
$$\frac{3\pi}{2}, \frac{\pi}{2}$$
 b. π
c. $\frac{\pi}{2}$ d. $\frac{3\pi}{2}$

17. Solve $6 + 4 \sin x = 6 - 8 \sin x$ for $0^{\circ} \le x \le 180^{\circ}$.

```
a. 90° b. 180° or 0°
c. 135° d. 30°
```

```
18. Simplify \frac{\sin x}{\sec x - 1}

a. \cot x + \cot x \sin x

b. \cot x + \cot x \cos x

c. \sin x \cos x + \sin x

d. \cot x - \cot x \cos x
```

19. Use a half-angle identity to find the exact value of $\tan 22.5^{\circ}$.

a.
$$\sqrt{3-2\sqrt{2}}$$

b. $\sqrt{3+2\sqrt{3}}$
c. $\sqrt{3+2\sqrt{2}}$
d. $\sqrt{3-2\sqrt{3}}$

20. If $\sin \theta = -0.5$, find $\sec \left(\theta - \frac{\pi}{2}\right)$.
