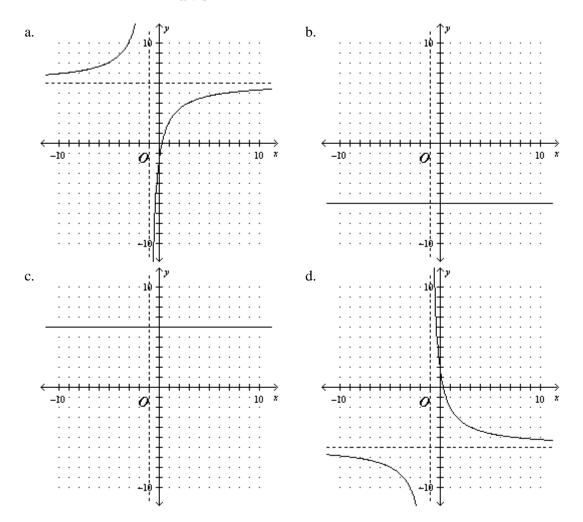
Indicate the answer choice that best completes the statement or answers the question.

Use the given zero to find all zeros of each function.

```
1. g(x) = x^5 + 11x^4 + 5x^3 - 345x^2 - 1476x - 1836; -4 - i
a. -6, -3, 6, -4 + i, -4 - i
b. -4 + i, -4 - i
c. -6, -3, 6, -4 + i
d. -6, -3, 6, -4 - i
```

2. Use the end behavior of the graph to solve $3x^3 + 9x^2 - 12x < 0$.


a.
$$(0, 1)$$
 b. $(-4, 0)$
c. $(-4, 0)$ or $(1, \infty)$ d. $(-\infty, -4)$ or $(0, 1)$

3. Solve $\log_{6} x = 2$

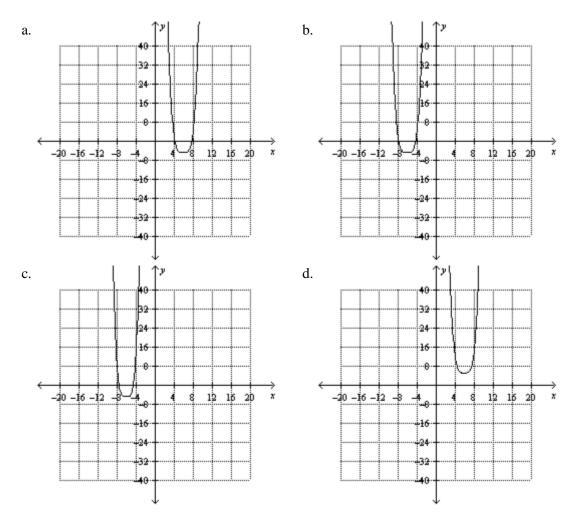
a. 36	b. 12
c. 6	d. 64

4. Which is a graph of $f(x) = \frac{6x-2}{x+1}$, with any vertical or horizontal asymptotes indicated by dashed lines?

Expand each expression.

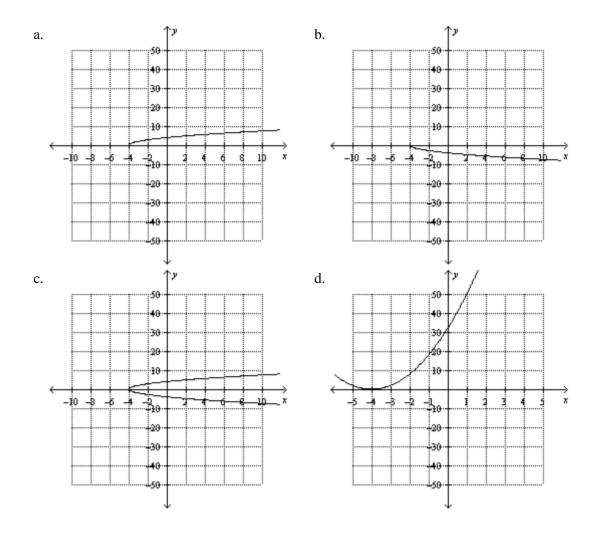
5.
$$\log_2 [(2x)^3(x+1)]$$

a. $3 + 3 \log_2 x \times \log_2 (x+1)$
b. $3 + 3 \log_2 (2x+1)$
c. $3 + 2 \log_3 x + \log_2 (x+1)$
d. $3 + 3 \log_2 x + \log_2 (x+1)$


6.
$$\frac{3x-1}{4} - \frac{x-5}{5} > -2$$

a. $x > 0$ or $x < -5$
b. $x < -5$
c. $x > -5$
d. $x < 0$ or $x > 5$

Powered by Cognero


7. Determine which consecutive integers do *not* have a real zero of $f(x) = x^3 + 9x^2 + 8x - 5$ between them.

a. (-8, -7) b. (4, 5) c. (0, 1) d. (-2, -1)

8. Graph
$$f(x) = \frac{1}{2}(x-6)^4 - 5$$
.

9. Graph
$$f(x) = 2\sqrt{x+4}$$
.

10. Use the end behavior of the graph to solve $3x^3 + 4x^2 - 4x < 0$.

a.
$$\left(0, \frac{2}{3}\right)$$

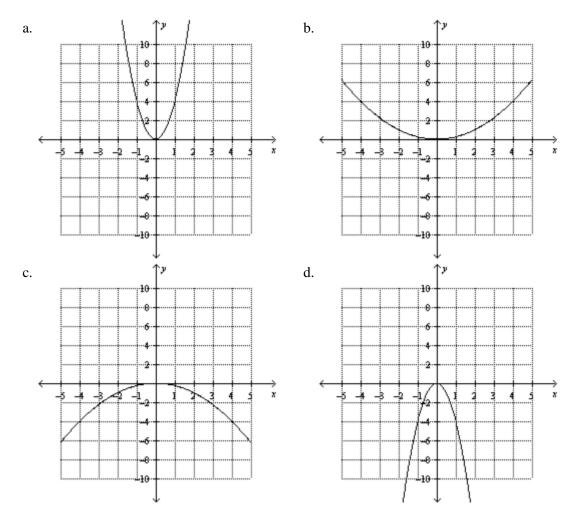
b. $\left(-2, 0\right)$
c. $\left(-2, 0\right)$ or $\left(\frac{2}{3}, \infty\right)$
d. $\left(-\infty, -2\right)$ or $\left(0, \frac{2}{3}\right)$

11. Determine the equation whose roots are -3, 3, and 3.

a.
$$x^{3} + 3x^{2} - 9x + 27 = 0$$

b. $x^{3} - 3x^{2} - 9x + 27 = 0$
c. $x^{3} - 9x^{2} - 9x + 27 = 0$
d. $x^{3} - 9x^{2} + 27x + 27 = 0$

Class:


Precalculus-G11-Ch2-Test

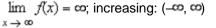
12. Solve.

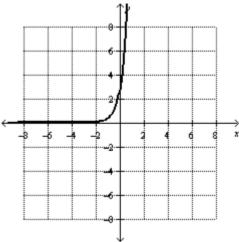
 $\frac{x+3}{x-5} = \frac{x+7}{x-9}$

a. 1 b. 8 c. -5 d. 2

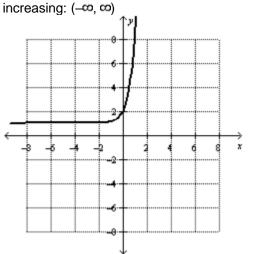
13. Graph $h(x) = -4x^2$

Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth.

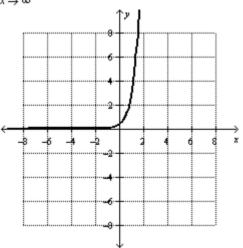

14. 32 28' 10"

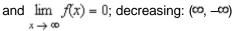

- a. 32.469°
- b. 32.281°
- c. 32.1651°
- d. 32°

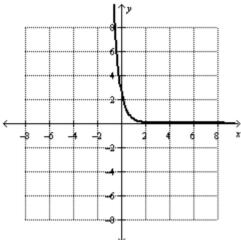
Sketch and analyze the graph of each function. Describe its domain, range, intercepts, asymptotes, end behavior, and where the function is increasing or decreasing.


15. $g(x) = e^{2x+1}$

a. D = (- ∞ , ∞); R = (0, ∞); *y*-intercept: (0, *e*) or (0, 2.72); *x*-intercept: none; asymptote: *x*-axis; end behavior: $\lim_{x \to -\infty} f(x) = 0$ and

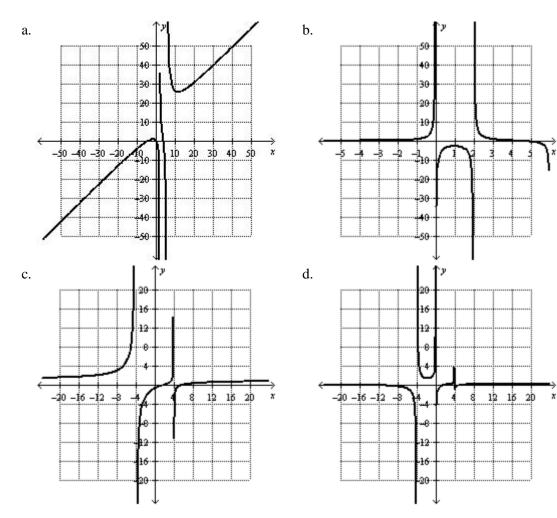



c. D = (- ∞ , ∞); R = (- ∞ , ∞); *y*-intercept: (0, 2); *x*-intercept: none; asymptote: x = 1; end behavior: $\lim_{x \to -\infty} f(x) = 1$ and $\lim_{x \to \infty} f(x) = \infty$;



b. D = (- ∞ , ∞); R = (0, ∞); y-intercept: (0, 0.3); x-intercept: none; asymptote: x-axis; end behavior: $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = \infty$; increasing: (- ∞ , ∞) $x \to \infty$

d. D = (-∞, ∞); R = (0, ∞); *y*-intercept: (0, *e*) or (0, 2.72); *x*-intercept: none; asymptote: *x*-axis; end behavior: $\lim_{x \to -\infty} f(x) = \infty$


Powered by Cognero

Class:

Find each f(c) using synthetic substitution.

16.
$$f(x) = 2x^5 + 10x^4 + 4x^3 - x^2 - 2x + 6$$
; $c = -5$
a. 121 b. 11,991
c. -509 d. 12,971

17. Graph
$$f(x) = \frac{x(x-4)(x+4)}{x^2 - 8x + 12}$$

Class:_____

18. Find the domain of and the equations of any vertical or horizontal asymptotes for $g(x) = \frac{x^2 - x - 6}{x - 3}$.

- a. D = { $x \mid x \neq 3, x \in P$ }; vertical asymptote: x = -2
- b. D = { $x \mid x \neq -3, x \in P$ }; vertical asymptote: x = -2
- c. D = { $x \mid x \neq -3, x \in P$ }; vertical asymptote: x = 2
- d. D = { $x \mid x \neq 3, x \in P$ }; vertical asymptote: x = 2

Use the graph of *f* to describe the transformation that results in the graph of *g*. Then sketch the graphs of *g* and *f*.

19.
$$f(x) = \left(\frac{1}{3}\right)^{x}; g(x) = \left(\frac{1}{3}\right)^{x-2} - 4$$

a. g(x) is the graph of f(x) translated 4 unit(s) to the right and 2 unit(s) down.

b. g(x) is the graph of f(x) translated 2 unit(s) to the right and 4 unit(s) down.

c. g(x) is the graph of f(x) translated 2 unit(s) to the left and 4 unit(s) down.

d. g(x) is the graph of f(x) translated 4 unit(s) to the left and 2 unit(s) down.

Solve each inequality. Round to the nearest hundredth.

$20.\ 3x^2 - 4 \le 6 - 5x$	
----------------------------	--

a. $-2.84 \le x \le 1.17$	b. no solution
c. infinite solutions	d. $x \le -2.84$ or $x \ge 1.17$
