
ſγ





#### 2. Use the domain and range of each of the following relations to determine which is a function.

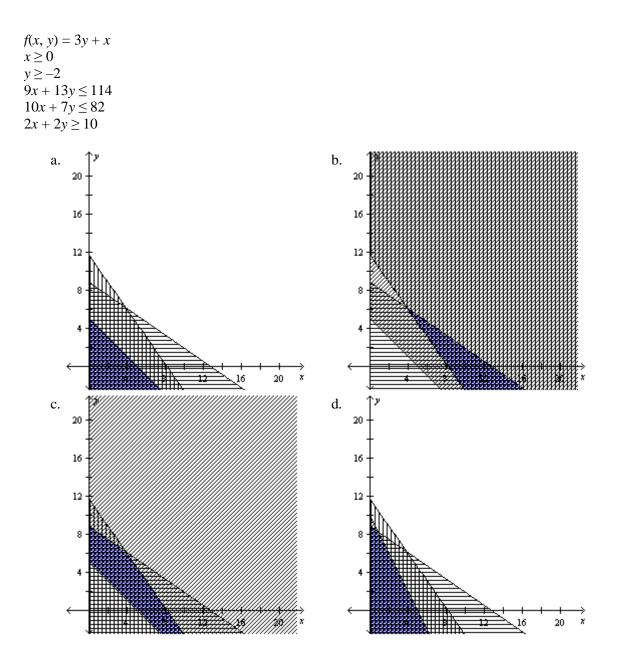
a. {(-4, 3), (-2, -1), (-4, 8)}
b. {(-4, 3), (-2, -1), (-7, 8)}
c. {-4, -2, -7, 7}
d. {(-4, 3), (-2, -1), (-2, -8), (-7, 8)}

#### 3. Choose the phrase that best describes the matrix.

$$\begin{bmatrix} 9 & 8 & -7 \\ -2 & -4 & 9 \\ -7 & 8 & -5 \end{bmatrix}$$

a. augmented matrix

b. coefficient matrix


- c. augmented matrix in row-echelon form
  - d. none of the above

4. If 
$$\cos x = \frac{\sqrt{3}}{2}$$
, find  $\cos(x + \pi)$ .  
a.  $\frac{-\sqrt{3} - 1}{2}$   
b.  $-\frac{\sqrt{3}}{2}$   
c.  $-\frac{1}{2}$   
d.  $\frac{\sqrt{3}}{2}$ 

5. Simplify 
$$\frac{1 - \sec^2 \theta}{\tan^2 \theta}$$
.  
a.  $\tan^2 \theta$   
b.  $\csc^2 \theta$   
c.  $-1$   
d. 1

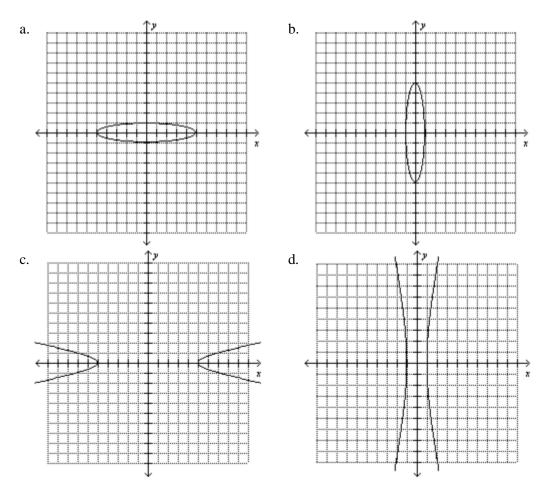
## 6. Graph the region corresponding to the solution of the system of constraints.

\_\_\_\_



7. The graph of the equation  $x = y^2 + 7$  is symmetric with respect to which of the following?

- a. the line y = x b. the line y = -x + 7
- c. the *y*-axis d. the *x*-axis

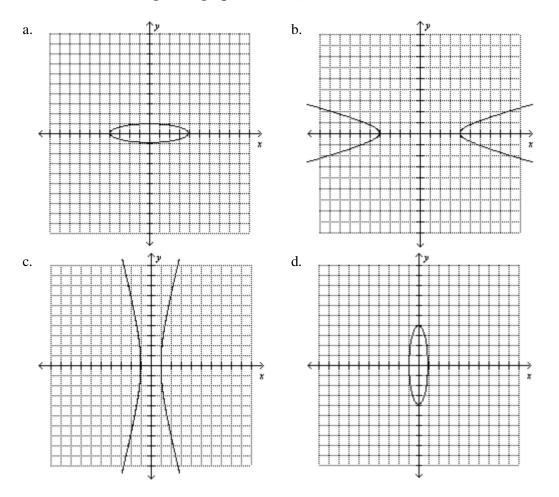

Find the maximum and minimum values of the objective function f(x, y) and for what values of x and y they occur, subject to the given constraints.

Class:

8. f(x, y) = x + 10y  $x \ge 0$   $y \ge 0$   $3x + 6y \le 84$  $9x + 3y \le 72$ 

| a. max at (0, 14) = 140, min at (0, 0) = 0 | b. max at $(5, 15) = 155$ , min at $(0, 0) = 0$ |
|--------------------------------------------|-------------------------------------------------|
| c. max at (8, 0) = 8, min at (0, 0) = 0    | d. max at (4, 12) = 124, min at (0, 0) = 0      |

# 9. Which of the following is the graph of $25x^2 + y^2 = 25$ ?




10. Use Cramer's Rule to find the solution of the system of linear equations, if a unique solution exists.

-2x - 8y = 76-7x - y = 77

a. (-10, -7) b. (-13, -6) c. (-10, -6) d. no unique solution

# 11. Which of the following is the graph of $x^2 + 16y^2 = 16$ ?



12. Which statement is true for the graph of  $f(x) = 2x^3 - 6x^2 - 48x + 24$ ?

- a. (4, -140) is a relative minimum; (-2, 77) is a relative maximum
- b. (4, -136) is a relative minimum; (-2, 80) is a relative maximum
- c. (-2, 80) is a relative minimum; (4, -136) is a relative maximum
- d. (-2, 77) is a relative minimum; (4, -140) is a relative maximum

13. Use an inverse matrix to solve the system of equations, if possible.

x - 5y + 2z = -33-x - 4y + z = -42 x - 9y - 6z = -113 a. (8, -1, 5) b. (7, 10, 5)

c. (8, 9, 2) d. no solution

14. Find the component form of the vector v with magnitude 3 and direction angle 41°.

a. <-2.96, -0.48> b. <1.97, 2.26> c. <0.25, 0.22> d. <2.26, 1.97>

15. Find the projection of  $u = \langle -6, 2 \rangle$  onto  $v = \langle -3, 2 \rangle$ .

| a. $<-\frac{11}{24}, \frac{11}{36}>$ | b. $<-\frac{132}{13}, \frac{44}{13}>$ |
|--------------------------------------|---------------------------------------|
| c. <- <u>13</u> , <u>13</u>          | d. < <u>-66</u> , <u>44</u>           |

#### 16. Which of the following statements is (are) true for all positive integers?

1) 
$$\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots + \frac{1}{5^n} = \frac{1}{3} \left( 1 - \frac{1}{2^n} \right)$$

2)  $9^{x}$  – 1 is divisible by 7.

| a. Both statements are true.          | b. None of the statements are true.  |
|---------------------------------------|--------------------------------------|
| c. Only the second statement is true. | d. Only the first statement is true. |

17. If 
$$\csc \theta = -\frac{5}{4}$$
 on the interval (270°, 360°), find tan  $\theta$ .  
a.  $-\frac{4}{3}$   
b.  $\frac{3}{4}$   
c.  $\frac{4}{3}$ 

$$\frac{d}{-\frac{4}{5}}$$

18. Choose the phrase that best describes the matrix.

 $\begin{bmatrix} -1 & -3 & -1 \\ 9 & -9 & -1 \\ -1 & -3 & 4 \end{bmatrix}$ 

a. coefficient matrix b. augmented matrix in row-echelon form

c. augmented matrix d. none of the above

#### **19. Find the direction angle of 2i + 12j.**

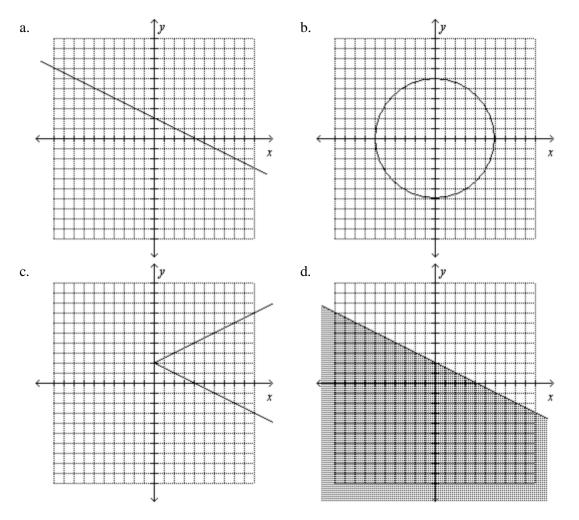
| a. 88.10°  | b. 260.54° |
|------------|------------|
| c. 170.54° | d. 80.54°  |

20. While moving, Jacob pushes a dolly up a ramp with a constant force of 85 N. If the ramp has an incline of 10° with the horizontal, what amount of work (in joules) will Jacob have do to push the dolly 30 meters?

| a. about 443 joules | b. about 2511 joules |
|---------------------|----------------------|
| c. about 436 joules | d. about 2550 joules |

21. Find the volume of the parallelepiped with adjacent edges t = 9j - 6j + 2k, u = i - j + 3k and v = -2i - 10j + 5k.

| a. 209 cubic units | b. 53 cubic units  |
|--------------------|--------------------|
| c. 11 cubic units  | d. 267 cubic units |


#### 22. Solve the system of equations using Gauss-Jordan elimination.

-4x + 6y - 2z = -54 -14x + 18y - 12z = -140 -10x + 14y - 6z = -122a. x = 4, y = -8, and z = -5b. x = -9, y = 7, and z = 66c. x = -7, y = 9, and z = -7d. no solution

23. SCIENCE The amount of force needed to keep a stationary object on a flat surface from moving is called static friction. If a book weighs *p* pounds and it is on a flat surface that is at an angle of  $\theta$ degrees, the coefficient of static friction *c* for the book is given by  $cp \csc \theta = p \cot \theta$ . Which of the following is an equivalent equation for *c*?

a.  $c = \cos \theta$ b.  $c = \cot \theta$ c.  $c = \sin \theta$ d.  $c = \tan \theta$ 

### 24. Which of the following graphs is a function?



#### 25. Which of the following statements is (are) true for all positive integers?

1) 
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$
  
2)  $\frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots + \frac{1}{5^n} = \frac{1}{4} \left( 1 - \frac{1}{5^n} \right)$ 

- a. Both statements are true.
- b. None of the statements are true.
- c. Only the first statement is true.
- d. Only the second statement is true.

26. Choose the phrase that best describes the matrix.

 $\begin{bmatrix} 1 & 2 & -5 & -9 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 6 \end{bmatrix}$ 

| a. augmented matrix in row-echelon form | b. augmented matrix  |
|-----------------------------------------|----------------------|
| c. coefficient matrix                   | d. none of the above |

#### 27. Identify the function for which an inverse function exists.

| a. $f(x) = 5x^2 - 3$   | b. $f(x) =  x - 1 $   |
|------------------------|-----------------------|
| c. $f(x) = \sqrt{x+2}$ | d. $f(x) = [[x + 5]]$ |

#### 28. Use an inverse matrix to solve the system of equations, if possible.

| -6x + 5y + 4z = 0  |                 |
|--------------------|-----------------|
| 5x + 7y + 4z = -74 |                 |
| 4x + 2y - 4z = -16 |                 |
|                    |                 |
| a. (-6, -4, -4)    | b. (-6, -4, -4) |
| с. (-6, 5, -4)     | d. no solution  |

Find the maximum and minimum values of the objective function f(x, y) and for what values of x and y they occur, subject to the given constraints.

```
29. f(x, y) = 4x + 6y

y \le -4x - 4

y \le 2x - 10

y \ge -4x + 20

a. min at (1, -8) = -44, b. min at (1, -8) = -44, no max

max at (5, 0) = 20

c. max at (1, -8) = -44, no min d. max at (5, 0) = 20, no min
```

Find the maximum and minimum values of the objective function f(x, y) and for what values of x and y they occur, subject to the given constraints.

\_\_\_\_\_

30. f(x, y) = x + 7y  $x \ge 0$   $y \ge 0$   $3x + 9y \le 99$   $9x + 2y \le 72$ a. max at (7, 12) = 91, min at (0, 0) = 0 b. max at (8, 0) = 8, min at (0, 0) = 0 c. max at (6, 9) = 69, min at (0, 0) = 0 d. max at (0, 11) = 77, min at (0, 0) = 0

#### 31. Which of the following statements is (are) true for all positive integers?

# 1) 7<sup>n</sup> - 2<sup>n</sup> is divisible by 5. 2) n<sup>2</sup> + 2n is divisible by 2.

| a. Both statements are true.         | b. None of the statements are true.   |
|--------------------------------------|---------------------------------------|
| c. Only the first statement is true. | d. Only the second statement is true. |

#### 32. Solve the system of equations.

$$\begin{aligned} -3x + 3y - 9z + 42w &= -42 \\ -6x + 3y - 18z + 96w &= -54 \\ x - y + 2z - 10w &= 11 \end{aligned}$$
  
a.  $(-8 - w, -7 + 10w, -2 - 10w, w)$   
b.  $(4 + 4w, 4 + 4w, 3 - 2w, w)$   
c.  $(4, -133, 1, 9)$   
b.  $(-5 + 6w, -10 + 4w, 3 + 4w, w)$