

Physics G12- Q3W6-Electric currents-Test

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What is the potential difference across a $5.0\ \Omega$ resistor that carries a current of $5.0\ A$?

- $10.0\ V$
- $1.0\ V$
- $1.0 \times 10^3\ V$
- $25\ V$

2. When compared in a given time interval with other lightbulbs connected to a $120\ V$ circuit, a $60\ W$ lightbulb

- converts more electrical energy to heat and light than a $100\ W$ lightbulb.
- converts less electrical energy to heat and light than a $100\ W$ lightbulb.
- converts the same electrical energy to heat and light as a $40\ W$ lightbulb.
- converts less electrical energy to heat and light than a $40\ W$ lightbulb.

3. What effect will be produced on a capacitor if the separation between the plates is increased?

- It will decrease the capacitance.
- It will decrease the charge.
- It will increase the capacitance.
- It will increase the charge.

4. When you flip a switch to turn on a light, the delay time before the light turns on is determined by

- the drift speed of the electrons in the wire.
- the resistance of the wire.
- the speed of the electric field moving in the wire.
- the number of electron collisions per second in the wire.

5. A flashlight bulb with a potential difference of $4.5\ V$ across it has a resistance of $8.0\ \Omega$. How much current is in the bulb filament?

- $0.56\ A$
- $36\ A$
- $9.4\ A$
- $1.8\ A$

6. Which of the following is *not* a characteristic of electrical potential energy?

- It results from the interaction between charges.
- It results from a single charge.
- It is associated with a charge in an electric field.
- It is a form of mechanical energy.

7. A parallel-plate capacitor has a capacitance of $C\ F$. If the area of the plates is doubled while the distance between the plates is halved, the new capacitance will be

- $\frac{C}{2}$.
- $\frac{C}{4}$.
- $4C$.
- $2C$.

8. Which of the following does *not* affect a material's resistance?

- the temperature of the material
- the length of the material
- the type of material
- Ohm's law

9. If the current through a $5.00 \times 10^2\ W$ heater is $4.00\ A$, what is the potential difference across the ends of the heating element?

- $2.50 \times 10^1\ V$
- $8.00 \times 10^{-3}\ V$
- $2.00 \times 10^3\ V$
- $1.25 \times 10^2\ V$

10. A steam turbine at an electric power plant delivers $4500\ kW$ of power to an electrical generator that converts 95 percent of this mechanical energy into electrical energy. What is the current delivered by the generator if it delivers energy at $3600\ V$?

- $1.2 \times 10^3\ A$
- $0.66 \times 10^3\ A$

_____ b. 5.9×10^3 A d. 1.0×10^3 A

_____ 11. If a lamp has a resistance of 136Ω when it operates at a power of 1.00×10^2 W, what is the potential difference across the lamp?
a. 125 V c. 117 V
b. 136 V d. 220 V

_____ 12. When electrons move through a metal conductor,
a. they move at the speed of light in a vacuum.
b. they move in a straight line through the conductor.
c. they move in zigzag patterns because of repeated collisions with the vibrating metal atoms.
d. the temperature of the conductor decreases.

_____ 13. If a 325 W heater has a current of 6.0 A, what is the resistance of the heating element?
a. 54Ω c. 88Ω
b. 9.0Ω d. 4.5Ω

_____ 14. A lightbulb has a resistance of 240Ω when operating at 120 V. What is the current in the lightbulb?
a. 0.50 A c. 1.0 A
b. 0.20 A d. 2.0 A

_____ 15. When a capacitor discharges,
a. charges move from one plate to the other until equal and opposite charges accumulate on the two plates.
b. it must be attached to a battery.
c. it cannot be connected to a material that conducts.
d. charges move through the circuit from one plate to the other until both plates are uncharged.

_____ 16. Which of the following wires would have the *least* resistance, assuming that all of the wires have the same cross-sectional area?
a. an iron wire 5 cm in length c. a copper wire 10 cm in length
b. an iron wire 10 cm in length d. a copper wire 5 cm in length

_____ 17. A blow dryer draws 11 A when it is connected to 125 V. If electrical energy costs \$0.090/kW•h, what is the cost of using the blow dryer for exactly 15 min?
a. \$0.12 c. \$0.33
b. \$0.064 d. \$0.032

_____ 18. Increasing the potential difference between the plates of a capacitor will produce what effect on the capacitor?
a. It will decrease the charge on each plate.
b. It will increase the capacitance.
c. It will increase the charge on each plate.
d. It will decrease the capacitance.

_____ 19. When a positive charge moves in the direction of the electric field, what happens to the electrical potential energy associated with the charge?
a. It decreases.
b. It remains the same.
c. It sharply increases, and then decreases.
d. It increases.

_____ 20. Tripling the current in a circuit with constant resistance has the effect of changing the power by what factor?
a. 3 c. $\frac{1}{9}$
b. 9 d. $\frac{1}{3}$

____ 21. Which process will double the power dissipated by a resistor?

- doubling the current and making the resistance half as big
- doubling the current while making the potential difference half as big
- doubling the current while doubling the resistance
- doubling the current and doubling the potential difference

____ 22. A color TV draws about 2.5 A when it is connected to a 120 V outlet. Assuming electrical energy costs \$0.060 per kW•h, what is the cost of running the TV for exactly 8 h?

- \$0.03
- \$0.30
- \$0.014
- \$0.14

____ 23. A 0.50 μF capacitor is connected to a 12 V battery. Use the expression $PE = \frac{1}{2}C(\Delta V)^2$ to determine how much electrical potential energy is stored in the capacitor.

- 3.6×10^{-5} J
- 1.0×10^{-5} J
- 3.0×10^{-6} J
- 6.0×10^{-6} J

____ 24. If a 75 W lightbulb operates at a voltage of 120 V, what is the current in the bulb?

- 1.6 A
- 1.95×10^2 A
- 9.0×10^3 A
- 0.62 A

____ 25. When comparing the net charge of a charged capacitor with the net charge of the same capacitor when it is uncharged, the net charge is

- greater in the charged capacitor.
- greater or less in the charged capacitor, but never equal.
- equal in both capacitors.
- less in the charged capacitor.

____ 26. A 0.25 μF capacitor is connected to a 9.0 V battery. What is the charge on the capacitor?

- 1.2×10^{-12} C
- 2.5×10^{-6} C
- 2.2×10^{-6} C
- 2.8×10^{-2} C

____ 27. The energy gained by electrons as they are accelerated by an electric field is

- less than the average loss in energy due to collisions.
- not affected by the gain in energy due to collisions.
- greater than the average loss in energy due to collisions.
- equal to the average loss in energy due to collisions.

____ 28. The amount of charge that moves through the filament of a lightbulb in 2.00 s is 2.67 C. What is the current in the lightbulb?

- 1.33 A
- 5.34 A
- 0.417 A
- 0.835 A

____ 29. Two positive point charges are initially separated by a distance of 2 cm. If their separation is increased to 6 cm, the resultant electrical potential energy is equal to what factor multiplied by the initial electrical potential energy?

- 3
- $\frac{1}{9}$
- 9
- $\frac{1}{3}$

____ 30. Which set of information will allow you to calculate the kilowatt•hr usage?

- the voltage and current in the circuit
- the voltage and the resistance of the circuit
- the current and the time the circuit operates
- the resistance, the current, and the time the circuit operates

