Bio-10-Q3W2-Worms-Moluscks-Qs.Bank

Modified True/False

Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true.

 1.	Roundworms are have <u>one</u> body opening.
 2.	<u>All</u> roundworms are parasites.
 3.	Trichinella can be ingested in raw or undercooked pork.
 4.	Pinworms are the most common parasites in children living in the United States.
 5.	Hookworms can be contracted by <u>eating improperly cooked infected pork</u> .
 6.	The most complex and most recently evolved mollusks are gastropods.
 7.	Earthworms are hermaphrodites because each worm produces both eggs and sperm.
 8.	The respiratory organs in aquatic gastropods are <u>primitive lungs</u> .
 9.	Gastropods have two shells.
 10.	Bivalves obtain food by predation.
 11.	In shelled mollusks, the <u>radula</u> secretes the shell.

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 12.	Nematocysts discharge when		
	a. salt concentration in the ocean drops	c.	a cnidarian regenerates
	b. tentacles touch a source of food	d.	cnidarians reproduce
 13.	A Portuguese man-of-war is an example of		
	a. an anthozoan	c.	a hydrozoan colony
	b. a large scyphozoan	d.	a sea anemone
 14.	Uncooked or undercooked pork may contain		
	a. trichina worms	c.	pinworms
	b. hookworms	d.	free-living roundworms
 15.	In a cnidarian, digestion occurs in the		
	a. proglottids	c.	digestive tract
	b. gastrovascular cavity	d.	tentacles
 16.	A has a muscular tube called the pharyn:	x, w	hich can be extended outside its body to suck in food.
	a. jellyfish	c.	planarian
	b. sponge	d.	tapeworm
 17.	A group of cnidarians that provide food and she	elter	for many kinds of animals are the
	a. jellyfishes	c.	sea anemones
	b. hydras	d.	corals
 18.	Because sponges are sessile, they get their food	l thr	ough
	a. scavenging the seafloor	c.	the spicules
	b. filter feeding	d.	tentacles
	B		

Figure 26-2

- 19. Which structure shown in Figure 26-2 analogous to an anus? ____
 - a. A c. C b. B
 - d. D
- 20. In Figure 26-2, how did the structure labeled A develop?
 - a. fertilization by sperm

- c. asexually by budding
- d. formation of gametes

b. fragmentation

- 21. How are the two organisms shown in Figure 26-3 different?
 - a. A is a cnidarian and B is not
- b. A moves but B doesn't
- c. only B is poisonous
- d. A is a medusa and B is a polyp colony

- 22. Which organism shown in Figure 26-4 does not have hooks and suckers on its mouth? a. A c. C
 - b. B d. D
- 23. Which organism shown in Figure 26-4 is a parasite that requires two hosts?
 - c. C a. A
 - b. B d. D
- 24. Which organism shown in Figure 26-4 is of a phylum that can infect plants?
 - a. A c. C d. D
 - b. B
- 25. What can be inferred from Figure 26-5?

Roundworm Infections

Number of Cases	Low Temperature	Day
300	60	1
295	58	5
290	55	10
320	51	15
303	55	20
295	45	25

15	25	30		
E: OCE				

Figure 26-5

- this species of roundworm cannot survive outside hosts at 25 degrees a.
- this species of roundworm is widespread b.
- this species of roundworm does not flourish in warm weather c.
- this species of roundworm becomes dormant in warm weather d.

- 26. Which shell shown in Figure 27-2 is from the most recently evolved organism?
 - a. Α c. C d. none of them b. B
- 27. Which shell shown in Figure 27-2 is from a bivalve?
 - a. A c. С b.
 - d. none of them В
 - 28. Which shell shown in Figure 27-2 came from a stomach-footed mollusk?
 - С a. A c.
 - b. B d. none of them
 - 29. Which shell shown in Figure 27-2 came from a mollusk that uses jellyfish nematocysts for protection?
 - a. А b. B

С c. d. none of them

- 30. Which part of the squid shown in Figure 27-3 is analogous to a snail's shell? a. A c. C
 - b. B d. D
 - 31. Which part of the squid shown in Figure 27-3 is the foot?
 - a. А c. C
 - b. B d. D

- 32. In the earthworm shown in Figure 27-4, what part is analogous to the stomach in humans?
 - a. А c. C В
 - b. d. D
- 33. In the earthworm shown in Figure 27-4, what part is analogous to the central nervous system in humans? Α c. С a.

С

d. D

c.

- D b. В d.
- 34. In the earthworm shown in Figure 27-4, what part is analogous to the throat in humans?
 - С a. А c. В d. D b.
- 35. In the earthworm shown in Figure 27-4, what part is analogous to the kidneys in humans?
 - a. Α
 - b. B

Figure 27-5

- 36. According to Figure 27-5, which phylum evolved first?
 - a. annelids c. nematodes b. bivalves
 - d. planaria

c. nematodes

- 37. According to Figure 27-5, which phylum are annelids closest to on an evolutionary scale?
 - bivalves a.
 - b. gastropods d. cestodes

Completion

Complete each statement.

- 38. A(n) ______ is the sexual form of a cnidarian that has a body form like an umbrella with tentacles hanging down.
- 39. A(n) ______ is the tube-shaped body form with a mouth surrounded by tentacles, which serves as the asexual stage in some cnidarians.
- 40. Sponges are considered ______ because an individual sponge can produce both eggs and sperm.
- 41. Digestion in cnidarians takes place in the ______.

- 42. Sponges get their food by ______, in which small particles of food are removed from the water during passage through a part of their body.
- 43. An animal whose blood moves throughout its body within blood vessels has a(n)
- 44. The ______ is a tongue-like organ with rows of teeth that is used by gastropods to scrape, grate, or cut food.
- 45. You dissect an animal and observe pools of blood surrounding its internal organs. This animal has a(n)
- 46. The excretory structures that remove metabolic wastes from the bodies of animals such as mollusks and annelids are called ______.
- 47. In bivalves, the ______ expels large particles, sediment, and anything esle rejected through the excurrent siphon.

Matching

Match each item with the correct statement(s) below.

- a. leech c. mollusk
- b. fan worm

- d. earthworm
- _____ 48. gizzard grinds organic matter
- _____ 49. may eat only once every few months
- 50. traps food in the mucus on its "fans"
- _____ 51. burrows through soil providing aeration and fertilizer
- _____ 52. external parasite
- _____ 53. disturbances in water causes organism to withdraw inside tube
- ____ 54. muscular foot
- _____ 55. mantle

Short Answer

- 56. Put the following terms in order to show the structures through which water enters and passes through a sponge: *collar cells, osculum, pore cells.*
- 57. What tapeworm adaptations enable them to live in intestines?
- 58. Imagine that you are presented with a cnidarian. The animal is small, lives in freshwater, and appears to have tentacles around a columnar body. As you watch, the animal catches a daphnia. Into which cnidarian class would you place this animal?
- 59. Make a list of simple things people could do to prevent infection by parasitic worms.
- 60. How do parasitic roundworms keep from being digested by their host organisms?
- 61. How is the jellyfish's reproductive cycle an example of alternation of generations?
- 62. Describe the process by which sponges reproduce sexually by internal fertilization.
- 63. What advantage is there to the extracellular digestion of cnidarians over the intracellular digestion of sponges?
- 64. When you see a sponge passed through a sieve and separated into cells, you may think a sponge is simply a colony of individual cells. What makes you realize that it is more than this?
- 65. A biologist places a single, live sponge in a saltwater tank. After several weeks, the biologist observes other, smaller sponges living in the tank. Because the biologist is certain that no other sponge was introduced into the tank, what other explanation could you provide to explain the observation?

In an experiment about possible factors that cause the differentiation and growth of cells in hydra larvae, a proportion-altering factor (PAF) was discovered and isolated in a specific colonial cnidarian known as *Eudendrium sp.* In the experiment, hydra larvae were placed in solutions: one with 10 drops of PAF/mL of water, one with 15 drops, one with 20 drops, one with 30 drops, and a control solution. The experiment showed that PAF factor caused parts of the hydra to grow out of normal proportions. Table 26-2 and Figure 26-1 show the differences in tentacle development that result from varying concentrations of PAF. Study the illustration and the table and answer the questions that follow.

Amount of PAF	Number of Hydras						
(drops/10 mL of water)	tentacles near mouth	tentacles near base	no tentacles formed				
0	197	0	0				
10	90	119	0				
15	74	130	5				
20	30	145	26				
30	0	160	44				

Figure 26-1

- 66. What conclusions can you draw from the results shown in Table 26-2?
- 67. Refer to Figure 26-1. After 48 hours, most of the hydras treated with 30 drops of PAF/10 mL of water looked like polyp B, but some looked like polyp C. Describe the hydras that looked like polyp C.
- 68. After 48 hours, hydras from the control group in Figure 26-1 looked like polyp A in the figure; most hydras from the 15-drop solution looked like polyp B. How does polyp A differ from polyp B?
- 69. What was the control in the experiment? Refer to Figure 26-1.
- 70. Identify each numbered part of the earthworm shown in the diagram in Figure 27-1, using the letter of each appropriate term: A. ventral nerve cord, B. setae, C. simple brain, D. hearts, E. blood vessels, F. gizzard.

1. _____ 2. ____ 3. ____ 4. ____ 5. ____ 6. ____

Figure 27-1

- 71. Explain how the various segmented worms obtain food.
- 72. How do sea slugs improve their survival opportunities by feeding on jellyfishes?
- 73. What adaptations help the octopus and the squid escape their predators?
- 74. Suppose you are given an unknown mollusk to identify. The specimen does not have a shell. How could you decide whether the mollusk is an unshelled gastropod or a cephalopod?
- 75. An oyster produces a natural pearl when a parasite or a bit of sand lodges between the shell and the mantle. The oyster then grows layers of pearl around the foreign body. What is the advantage of pearl making to the oyster?
- 76. Most cephalopods lack an external shell. What is the adaptive advantage of this feature?

Alvin, a submersible vehicle used by oceanographers to study the ocean floor, has also proved invaluable in studying populations of deep-sea mollusks and segmented tube worms. The invertebrates in question live where hot seawater circulates through cracks in the ocean floor called deep-sea vents.

Suppose that you are an invertebrate biologist studying these animals. Your studies show that clams that live near the vents may grow as much as 3.8 cm per year—far more rapidly than other deep-water clams.

- 77. Some researchers have hypothesized that life may have begun at deep-sea vents. Why might this be?
- 78. Suppose your data show that the temperature is the same in samples taken close to the vents and some distance away from the vents. However, the size of the clams is smaller the farther they are from the vents. What would this indicate?
- 79. Plan an experiment to prove your hypothesis.
- 80. Form a hypothesis to explain why vent clams grow more rapidly than other clams at the same depth.

Bio-10-Q3W2-Worms-Moluscks-Qs.Bank Answer Section

MODIFIED TRUE/FALSE

1.	ANS:	F, two						
	PTS:	1	DIF:	В	OBJ:	26-8	NAT:	C5 C6 E1
2.	ANS:	F, Some						
	PTS:	1	DIF:	В	OBJ:	26-9		
	NAT:	UCP1 UCP4	A1 A	A2 C5 C6 E2	2 F1			
3.	ANS:	Т			PTS:	1	DIF:	В
	OBJ:	26-9	NAT:	UCP1 UCP4	A1 A	A2 C5 C6 E2	2 F1	
4.	ANS:	Т			PTS:	1	DIF:	В
	OBJ:	26-9	NAT:	UCP1 UCP4	A1 A	A2 C5 C6 E2	2 F1	
5.	ANS:	F, by walking	barefoo	ot on contamina	ited soil			
	PTS:	1	DIF:	В	OBJ:	26-9		
	NAT:	UCP1 UCP4	A1 A	A2 C5 C6 E2	2 F1			
6.	ANS:	F, cephalopod	8					
	PTS:	1	DIF:	В	OBJ:	27-2	NAT:	UCP5 C5 C6
7.	ANS:	Т			PTS:	1	DIF:	В
	OBJ:	27-3	NAT:	C3 C5 C6				
8.	ANS:	F, gills						
	PTS:	1	DIF:	В	OBJ:	27-2	NAT:	UCP5 C5 C6
9.	ANS:	F, Bivalves						
	PTS:	1	DIF:	В	OBJ:	27-2	NAT:	UCP5 C5 C6
10.	ANS:	F, filter feedin	g					
	ρτς.	1	DIE	B	OBI-	27_2	ΝΔΤ·	
11	ANS.	F mantle	DII.	D	ODJ.	272	11111.	0015 05 00
11.	71110.	I, mantie						
	PTS:	1	DIF:	В	OBJ:	27-1	NAT:	UCP5 C5 C6
мін тірі	Б СН(JICE						
	E CII	JICE						
12.	ANS:	В	PTS:	1	DIF:	В	OBJ:	26-5
	NAT:	A1 C1 C3			•			~ -
13.	ANS:	С	PTS:	1	DIF:	В	OBJ:	26-3
	NAT:	A1 C5 C6						
14.	ANS:	А	PTS:	1	DIF:	В	OBJ:	26-9

NAT: UCP1 | UCP4 | A1 | A2 | C5 | C6 | E2 | F1

15. ANS: B PTS: 1 DIF: B OBJ: 26-5

	NAT:	A1 C1 C3						
16.	ANS:	С	PTS:	1	DIF:	В	OBJ:	26-6
	NAT:	A1 C3 C5						
17.	ANS:	D	PTS:	1	DIF:	В	OBJ:	26-3
	NAT:	A1 C5 C6						
18.	ANS:	В	PTS:	1	DIF:	В	OBJ:	26-1
	NAT:	C1 C5 C6						
19.	ANS:	B	PTS:	1	DIF:	А	OBJ:	26-1
•	NAT:	C1 C5 C6	DTG		DIE		ODI	26.2
20.	ANS:	C	PTS:	1	DIF:	A	OBI:	26-2
01	INAT:		DTC.	1	DIE.	٨	ODI.	26.2
21.	ANS: NAT		P15:	1	DIF:	A	ODJ:	20-3
22		Δ	ρτς.	1	DIE	Δ	OBI-	26-6
22.	NAT:	A1 C3 C5	115.	1	υп.	Λ	ODJ.	20-0
23.	ANS:	C	PTS:	1	DIF:	В	OBJ:	26-7
	NAT:	A1 C3 C5						
24.	ANS:	D	PTS:	1	DIF:	В	OBJ:	26-9
	NAT:	UCP1 UCP4	A1 A	A2 C5 C6 E2	2 F1			
25.	ANS:	А	PTS:	1	DIF:	А	OBJ:	26-8
	NAT:	C5 C6 E1						
26.	ANS:	В	PTS:	1	DIF:	А	OBJ:	27-2
	NAT:	UCP5 C5 C6	5			_		
27.	ANS:		PTS:	1	DIF:	В	OBJ:	27-2
20	NAI:) DTC.	1	DIE.	D	ODI.	27.2
28.	ANS: NAT·		P15:	1	DIF:	В	OP1:	21-2
29	ANS.	D	J PTS	1	DIE	Δ	OBI-	27_2
27.	NAT:		115. S	1	υп.	1	ODJ.	21-2
30.	ANS:	B	PTS:	1	DIF:	А	OBJ:	27-1
	NAT:	UCP5 C5 C6	5					
31.	ANS:	Α	PTS:	1	DIF:	А	OBJ:	27-2
	NAT:	UCP5 C5 C6	5					
32.	ANS:	С	PTS:	1	DIF:	А	OBJ:	27-3
	NAT:	C3 C5 C6						
33.	ANS:	A	PTS:	1	DIF:	А	OBJ:	27-3
	NAT:	C3 C5 C6	570		D.IE		0.5.4	
34.	ANS:	B	PTS:	1	DIF:	A	OBJ:	27-3
25	NAI:	$C_3 C_5 C_6$	DTC.	1	DIE.	٨	ODI.	27.2
55.	ANS: NAT·		L12:	1	DIF:	A	ORI:	21-3
36	ANS.	D	₽TS∙	1	DIE	Δ	ORI-	27_2
50.	NAT.		110. S	1	<i>и</i> п.	<i>1</i> 1	005.	21-2
37.	ANS	C	PTS:	1	DIF:	А	OBJ:	27-4
	NAT:	C3 C5 C6	~ .					

COMPLETION

39.	PTS: ANS:	1 polyp	DIF:	В	OBJ:	26-4	NAT:	A1 C1 C3
40.	PTS: ANS:	1 hermaphrodite	DIF: s	В	OBJ:	26-4	NAT:	A1 C1 C3
41.	PTS: ANS:	1 gastrovascular	DIF: cavity	В	OBJ:	26-2	NAT:	C1 C5 C6
42.	PTS: ANS:	1 filter feeding	DIF:	В	OBJ:	26-5	NAT:	A1 C1 C3
43.	PTS: ANS:	1 closed circulat	DIF: ory sys	B tem	OBJ:	26-1	NAT:	C1 C5 C6
44.	PTS: ANS:	1 radula	DIF:	В	OBJ:	27-3	NAT:	C3 C5 C6
45.	PTS: ANS:	1 open circulato	DIF: ry syste	Bem	OBJ:	27-1	NAT:	UCP5 C5 C6
46.	PTS: ANS:	1 nephridia	DIF:	В	OBJ:	27-1	NAT:	UCP5 C5 C6
47.	PTS: ANS:	1 mantle	DIF:	В	OBJ:	27-3	NAT:	C3 C5 C6
	PTS:	1	DIF:	В	OBJ:	27-2	NAT:	UCP5 C5 C6
MATCHIN	NG							
48.	ANS: NAT:	D C3 C5 C6	PTS:	1	DIF:	В	OBJ:	27-3
49.	ANS: NAT:	A C3 C5 C6	PTS:	1	DIF:	В	OBJ:	27-4
50.	ANS: NAT·	B C3 C5 C6	PTS:	1	DIF:	В	OBJ:	27-4
51.	ANS:	D C3 C5 C6	PTS:	1	DIF:	В	OBJ:	27-4
52.	ANS:	$\begin{array}{c} C_{2} C_{2} C_{3} \\ C_{4} C_{5} C_{6} \\ \end{array}$	PTS:	1	DIF:	В	OBJ:	27-4
53.	ANS:	B B	PTS:	1	DIF:	В	OBJ:	27-4
54.	NAT: ANS:	C3 C5 C6 C	PTS:	1	DIF:	В	OBJ:	27-1
55.	NAT: ANS: NAT:	UCP5 C5 C C UCP5 C5 C	b PTS: 6	1	DIF:	В	OBJ:	27-1

38. ANS: medusa

SHORT ANSWER

56.	ANS: pore cell, collar cell,	osculu	m			
57.	PTS: 1 ANS: hooks and suckers for host	DIF: or attach	B ument, proglotti	OBJ: ds with	26-1 many eggs tha	NAT: C1 C5 C6
58.	PTS: 1 ANS: Most likely it is a hy	DIF: dra, a n	A nember of the cl	OBJ: lass Hy	26-7 drozoa.	NAT: A1 C3 C5
59.	PTS: 1 ANS: Wash hands before evegetables that have with contaminated set	DIF: eating; v been th pil; and	A vear shoes outd oroughly washe make sure child	OBJ: oors; ea ed; mak dren wa	26-3 at pork only if i ce sure that chil ash their hands	NAT: A1 C5 C6 It has been cooked thoroughly; eat only Idren's playthings do not come into contact regularly.
60.	PTS: 1 NAT: UCP1 UCP4 ANS: They have a thick ou	DIF: 4 A1 . ater cove	A A2 C5 C6 E ering that is not	OBJ: 2 F1 digesti	26-9 ble.	
61.	PTS: 1 ANS: The jellyfish has bot produce polyps. The	DIF: h an ase polyps	A exual stage and reproduce asex	OBJ: a sexua ually to	26-8 Il stage of repro form new mee	NAT: C5 C6 E1 oduction. The medusae reproduce sexually to dusae.
62.	PTS: 1 ANS: Sexual reproduction the sponge; sperm an collect the sperm and zygote develops into an adult.	DIF: begins re releas d transfo a flage	A with the format ed from one sp er them to amore llated larva that	OBJ: ion of e onge ar ebocyte t leaves	26-4 eggs and sperm ad carried to an s, which then the the parent spor	NAT: A1 C1 C3 I. In internal fertilization, eggs remain inside bother by water currents. The collar cells ransfer the sperm to eggs. The resulting nge and swims to a new surface to grow into
63.	PTS: 1 ANS: Being able to digest organisms larger tha	DIF: food in n its ind	A the gastrovascu lividual cells.	OBJ: ılar cav	26-2 ity instead of in	NAT: C1 C5 C6
64.	PTS: 1 ANS: The cells seem to rec	DIF: cognize	A that they belon	OBJ: g togetl	26-1 her because the	NAT: C1 C5 C6 by reunite after being separated.
	PTS: 1	DIF:	А	OBJ:	26-2	NAT: C1 C5 C6

65.	ANS: The additional spong reproduction.	ges could be the re	sult of asexual reprodu	action by budding or by hermaphroditic sexua	.1
66.	PTS: 1 ANS: As the hydras receive base increased. It app interfere with succes	DIF: A ed more PAF, the pears that PAF dis	OBJ: 26-2 number of tentacles no rupts the development	NAT: $C1 C5 C6$ ear the mouth decreased and the number near to of tentacles in hydras and, as a result, may	the
67.	PTS: 1 ANS: These hydras have no	DIF: A o tentacles at the r	OBJ: 26-4 nouth.	NAT: A1 C1 C3	
68.	PTS: 1 ANS: Polyp A has an exter disappeared, and the an effect on its feeding	DIF: A nded base. Its tenta tentacles are grow ng because tentacl	OBJ: 26-4 acles are close to its m ving lower on the body les are used to take for	NAT: A1 C1 C3 outh. In Polyp B, the base has almost y, away from the mouth. This position will hav od to the mouth.	ve
69.	PTS: 1 ANS: the larvae that were a	DIF: A allowed to develop	OBJ: 26-4	NAT: A1 C1 C3	
70.	PTS: 1 ANS: 1-C, 2-E, 3-D, 4-A, 5	DIF: A 5-B, 6-F	OBJ: 26-4	NAT: A1 C1 C3	
71.	PTS: 1 ANS: Leeches are external matter in the soil as r	DIF: B parasites that feed nutrients. Fan wor	OBJ: 27-3 d on blood. Earthworn ms trap food in the mu	NAT: C3 C5 C6 ns take soil into their bodies and use organic neus on their fans.	
72.	PTS: 1 ANS: When sea slugs feed that tries to eat the sl	DIF: A on jellyfishes, the ugs is bombarded	OBJ: 27-4 ey incorporate the jelly by a rapid discharge of	NAT: C3 C5 C6 fish nematocysts into their own tissues. Any f of the transplanted nematocysts.	ïsh
73.	PTS: 1 ANS: Both of these mollus They have the ability	DIF: A ks can move by je to excrete a dark	OBJ: 27-2 et propulsion in any din fluid that clouds the v	NAT: UCP5 C5 C6 rection by ejecting water through their siphons vater and confuses their predators.	S.
74.	PTS: 1 ANS: Students should sugg muscular foot, it is p specimen is dissected system would indicat	DIF: A gest using other di robably a gastropo d, an open circulat te a cephalopod.	OBJ: 27-2 stinguishing features. od; if it has tentacles w ory system would ind	NAT: UCP5 C5 C6 For example, if the specimen has a single with suckers, it is probably a cephalopod. If the icate a gastropod, whereas a closed circulatory	e V

75.	PTS: 1 ANS: The layers of pearl the oyster from dar	DIF: around tl nage.	A ne particle lodg	OBJ: ed insid	27-2 le the shell seal	NAT: UCP5 C5 C6 the particle off and protect the soft body of
76.	PTS: 1 ANS: An animal without predatory lives. The	DIF: a shell is ey have a	A freer to move a complex brain	OBJ: about. C and ner	27-2 Cephalopods ca rvous system, v	NAT: UCP5 C5 C6 n move rapidly, an advantage in their which is also a decided advantage.
77.	PTS: 1 ANS: The warmth of the led to the formation Earth.	DIF: vents, an of organ	A aerobic condition nic matter. These	OBJ: ons and se condi	27-2 high pressure, tions are simila	NAT: UCP5 C5 C6 the gases, minerals, and water might have ar to the conditions that existed on early
78.	PTS: 1 ANS: It would indicate the food supply.	DIF: nat a facto	A or other than ter	OBJ: nperatu	27-2 re is affecting t	NAT: UCP5 C5 C6 he size of the clams. It may have to do with
79.	PTS: 1 ANS: Students will select food supply. If they locations and relate	DIF: t one fact y study the these rea	A or as the indepe e effect of temp adings to clams	OBJ: endent v perature size at t	27-2 variable in their they have to these same loca	NAT: UCP5 C5 C6 experiment. They may use temperature or ake temperature readings at different tions.
80.	PTS: 1 ANS: Answers will vary. stimulates growth o	DIF: Students or that mo	A may hypothesi pre food is avail	OBJ: ze that lable ne	27-2 the water temp ar the vents.	NAT: UCP5 C5 C6 erature is higher near the vents and
	PTS: 1	DIF:	А	OBJ:	27-2	NAT: UCP5 C5 C6