Bio12-Q2W8-Quarter Exam 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. What must be on either end of any genetic material that is inserted into the cleaved DNA in Figure 13-5?

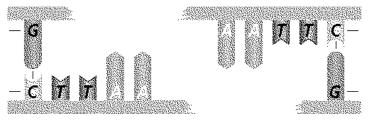
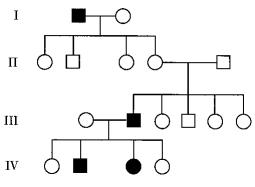


Figure 13-5

a. AATT

c. CGCG


b. CCGG

- d. ATAT
- 2. A child is diagnosed with a rare genetic disease. Neither parent has the disease. How might the child have inherited the disorder?
 - a. The disorder is recessive and carried by both parents.
 - b. The disorder could occur only as a mutation in the child because neither parent had the disease.
 - c. The disorder is sex linked and inherited only from the father.
 - d. The disorder is dominant and was carried by a parent.
- 3. The chromosome abnormality that occurs when part of one chromosome breaks off and is added to a different chromosome is
 - a. deletion

c. inversion

b. translocation

d. nondisjunction

Figure 12-3

- 4. Based on Figure 12-3, what do you know about individual III-1's mother?
 - a. She was homozygous recessive.
- c. She was a carrier.
- b. She was homozygous dominant.
- d. She had the trait.
- 5. According to the pedigree in Figure 12-3, how many of the offspring in the III generation show the normal trait?
 - a. 1

c. 5

b. 2

- d. 4
- 6. Genes located on homologous chromosomes may have alternate forms that control different forms of a trait. These alternate forms of a gene are called _____.
 - a. gametes

c. alleles

b. phenotypes

d. centromeres

 7.	A DNA segment is changed from -AATTAGAAATAG- to -ATTAGAAATAG This is a a. inversion
 8.	The effort to completely map and sequence the human genome will likely result in knowing the sequence of the approximately genes on the 46 human chromosomes. a. 3 billion c. 35 000 to 40 000 b. 46 d. 10 000
 9.	A DNA nucleotide may be made up of a phosphate group, along with a. deoxyribose sugar and thymine
	Start
	Met - Lys - Phe - Gly - Ala - Leu Stop
	End
	Deletion of U G G G G G G G G G G G G G G G G G G
 10.	What will be the result of the mutation in Figure 11-4?
	a. it will have no affect on protein function
	b. nearly every amino acid in the protein will be changedc. the organism will die
	d. only one amino acid will change
 11.	Which of the following would be an example of gene therapy technology? a. development of a nasal spray that contains copies of the normal gene that is defective in
	persons with cystic fibrosis b. cutting DNA into fragments with restriction enzymes
	c. separation DNA fragments using gel electrophoresis
	d. modifying E. coli to produce indigo dye for coloring denim blue jeans
 12.	A white mouse whose parents are both white produces only brown offspring when mated with a brown
	mouse. The white mouse is most probably a. homozygous recessive c. heterozygous
	b. homozygous dominant d. haploid

CL III	-	1	E	3	(_)
Child	Α	В	U	D	Е	F	G	Н
5807500000000	NOTES DE LA CONTRACTION DEL CONTRACTION DE LA CO		References	savenane		мменни	31589763311 3159787678	monumo
			*********	and the same of th				
		933245933		SANIERSA				
ANADOMESTICA STANDARDOM	NOOMOTO	1000000	NATIONING.		VALUE AND	ununun		
20052000000						2002000000		
ACSFOACHNESS						1000000401		

a. II b. I

	Figure 13-8		
12	According to Figure 13-8, which are the parent	c of	the shild?
 13.			B
	a. A b. D	c.	C
1.4			
 14.	analyzed?	gıv	e a false positive if only the longer DNA fragments were
	a. D	c.	A
	b. B	d.	
15.	Which of the following genetic disorders can be	e de	etected by karyotyping?
 10.	a. Klinefelter syndrome and sickle-cell anemi		occord by many oxypmig.
	b. hemophilia and cystic fibrosis	•	
	c. Down syndrome		
	d. Tay-Sachs disease and phenylketonuria		
16		: 4:6	formant lamaths is
 16.	The process used to separate DNA segments of a. gel electrophoresis		
	a. gel electrophoresisb. PCR	c. d.	gene amplification all of these
	U. FCK	u.	all of these
	inflated constricted all inflated 3 inflated; 1 constricted Figure 10-5		
17.	What is the phenotype of generation 1 in Figure	e 10	1-5?
	a. II		inflated
	b. constricted	d.	Ii
 18.	What is the genotype of generation 1 in Figure	10-	5?
	a. II	c.	

d. Ii

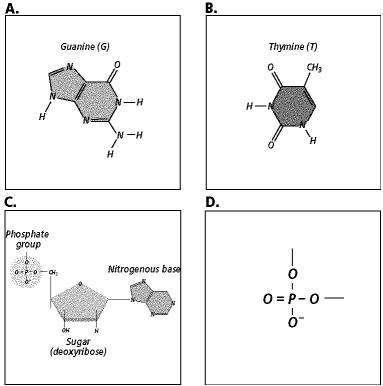


Figure 11-3

 19.	Which structure shown in Figure 11-3 does not contain a nitrogenous base?						
	a. A	c.	В				
	b. D	d.	C				
 20.	Which structure shown in Figure 11-3 is a py	rimid	ine?				
	a. D	c.	C				
	b. A	d.	В				
 21.	Which structure shown in Figure 11-3 would	attrac	et a free cytosine nucleotide?				
	a. B	c.	D				
	b. A	d.	C				
 22.	Messenger RNA is formed in the process of _						
	a. transcription	c.	replication				
	b. translation	d.	mutation				
 23.	Which one of the following nucleotide pair be	onds	would be found in a DNA molecule?				
	a. cytosine-uracil	c.	guanine-cytosine				
	b. adenine-cytosine	d.	adenine-guanine				
 24.	Both hemophilia and red-green color blindnes	ss are	·•				
	a. inherited only from the mother	c.	caused by a dominant gene				
	b. located on the Y chromosome	d.	sex-linked conditions				

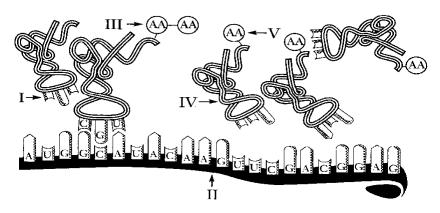


Figure 11-1

 25.	The process illustrated in Figure 11-1 is called										
	a.	transla					c. monoploidy				
	b.	transc	riptio	n			d. replication				
 26.				ructure	s in F	igure 11-1 are con					
	_	I and					c. d.	III and V			
		b. III and IV									
 27.						es this process show	wn in Figure 11-1 take place?				
	a.	on the		mosom	ie			at the ribosomes			
20	b.				41	1 1 . C. 1 1 .	d. in food vacuoles				
 28.	wr		•	• 1		bottom left-nand q	luaar	ant in Figure 10-6?			
	Γ	w		w							
	w										
	w										
		I	igur	e 10-6							
	a.	wW					c.	Ww			
	b.	WW						ww			
		MX	Мх	mX	mx	7					
	МХ										
						4					
	Мх										
						-					
	mΧ										
	mx										
		I	igur	e 10-7							
			0								
 29.	Но	w shou	ld the	top ro	w of	Figure 10-7 read?					
	a.	MMx	X. M	Mxx. N	ImxX	, Mmxx	c.	mMxX, mMxx, mmxX, mmxx			
	b.					X, MmXx	d.	mMXX, mMXx, mmXX, mmXx			
30.	Aι						sprin	g of crosses between different genotypes is the			
	a.			inance			c.	testcross			
	b.	law of	inde	penden	t asso	ortment	d.	Punnett square			

0.1	1 D'1	1	C							
31		oosomes are mader rRNA and prote		c.	tRNA and mRNA					
		rRNA and mRN		d.	protein and tRNA					
32					ocated on the X chromosome, it is nor	mally not possible				
		a	8 8							
	a.		er to pass the gene on to		ughter					
			o pass the gene on to her							
			o pass the gene on to her er to pass the gene on to							
	u.	color billiu fatik	er to pass the gene on to	1115 501	1					
			Help	Wante	ed					
	1	tireless workers.	No previous experience	necess	undreds of entry-level openings for eary. Must be able to transcribe code a close association with ribosomes is					
		Accuracy and Speed vital for this job in the field of translation. Applicants must demonstrate skills in transporting and positioning amino acids. Salary commensurate with experience.								
	1	Executive Position available. Must be able to maintain genetic continuity through replication and control cellular activity by regulation of enzyme production. Limited number of openings. All benefits.								
			louble-stranded template		s. Must be able to follow exact el from nucleus to the cytoplasm is					
			Tabl	e 11-1		1				
33	3. Ap	plicants for the fo	ourth job of the Help Wa	anted a	d in Table 11-1, "Supervisor," could q	ualify if they were				
	a.	mRNA		c.	rRNA					
	b.	tRNA		d.						
34		-	econd job of the Help W	anted a	ad in Table 11-1, "Accuracy and Speed	d," could qualify if				
		y were rRNA		c.	tRNA					
		DNA		d.	mRNA					
35			e 13-7, which DNA segu	ence w	vill be cleaved by EcoRI, which cuts A	ATT/TTAA?				
	A.		В.		•					
	-c /	A GGAT C C C A T G- T C C T A G G G T A C-	-GACTAGGTACCAA- -ctgatccatggtt-							
	c.		D.							
	-c G	A GA A T T C G A T C - I T C T T A A G C T A G -	-AAGCTTGACTA- -TTCGAACTGAT-							
		Figur	re 13-7							
	_	<u> </u>	V 1J⁻1	•	C					
	a. b.				C D					

	A human genetic disord a. Tay-Sachs disease b. phenylketonuria		c. d.	Huntington's disease cystic fibrosis
 37.	The passing on of traits a. gene splicing b. heredity	from parents to offs	c.	
	А. В.			
	-G G A T C C- -C C T A G G-	-G A C C G C- -C T G G C G-		
	C. D			
	-AAGCTT- -TTCGAA-	-G G T A C C- 		
	Figure 13	L6		
	J			
 38.	Which segment in Figur a. A	e 13-6 is not a palid	drome?	D
	b. C			В
 39.	If the segments in Figure	e 13-6 are mixed w	ith seve	ral restriction enzymes, which will not be cleaved?
	a. A b. D		c. d.	
40.		e 13-6 will attach to		c material with the sequence TCGA?
	a. C		c.	В
41	b. A		d.	D
 41.	The gamete that contain a. an egg	s genes contributed		dominant
	b. the sperm			a zygote
 42.				s <u>not</u> affected until after birth is that
				y the mother prior to delivery ent and therefore does not require a
	blood-clotting factor	r	_	•
	c. because the fetus do dangerous	es not breathe, the	accumu	lation of mucus in the lungs is not
	<u> </u>	other's enzyme leve	el prever	nts accumulation of the dangerous chemical
 43.	Eye color in humans is t	•	inherita	nce.
	a. multiple allelicb. sex-linked			simple dominant polygenic
44.		e rooster and a black		sults in 100% blue Andalusian offspring. When two of
 	these blue offspring are	mated, the probable	e phenot	typic ratio seen in their offspring would be
	a. 25% black, 50% blub. 75% blue, 25% white		c. d.	75% black, 25% white 100% blue
45.				fur color. If a homozygous brown mink is mated with a
 				many would be expected to be silver-blue?
	a. 6		c.	
	b. 3		d.	U

 46.	Cystic fibrosis and Tay-Sachs disease are typic	cal o	of recessive disorders concentrated in
	a. countries with hot, wet climates	c.	families with a single child
	b. ethnic groups	d.	the United States
 47.	Which of the following describes an organism	that	has the genotype Bb?
	a. heterozygous		inbreed
	b. homozygous	d.	all of these
48.	The pairing of in DNA is the key featur	e tha	at allows DNA to be copied.
	a. nitrogen bases		chromosomes
	b. codons		nucleotides
49.	Pollination can best be described as		
 .,,	a. the fusing of the egg nucleus with the polle	en n	ucleus
	b. the type of cell division that produces diple		
	c. the formation of male and female sex cells		2
	d. the transfer of the male pollen grain to the	fem	ale organ
50.			ust have at least dominant allele(s) present in the
	parent(s).		
	a. three	c.	two
	b. four	d.	one
51.	Sickle-cell anemia is a genetic disease commo	n to	human populations from Africa and the Mediterranean
			n elsewhere because the heterozygous state provides
	protection against malaria. Individuals afflicted		
	a. lack an enzyme that breaks down a lipid pr		
	b. will not exhibit the symptoms of the disease		· · · · · · · · · · · · · · · · · · ·
	c. are two times more likely to be males than	to b	pe females
	d. suffer tissue damage resulting from oxygen	n de	privation
 52.	Mendel's law of segregation states that during	mei	osis, the factors that control each trait separate, and only
	from each pair is/are passed to the offsp		- · · · · · · · · · · · · · · · · · · ·
	a. two factors	c.	the dominant trait
	b. one factor	d.	the recessive trait
 53.	A trait controlled by four alleles is said to have	e	.
	a. hybridization	c.	homologous alleles
	b. autosomes	d.	multiple alleles
 54.	Which of the following situations is most usua	1 for	a dominant allele that results in severe effects in the
	offspring?		
	a. Both parents have the trait.	c.	The trait occurs by mutation.
	b. Only a single offspring has the trait.	d.	none of these
 55.	Watson and Crick were the first to suggest that	t DN	VA is
	a. a protein molecule	c.	the genetic material
	b. a short molecule	d.	the shape of a double helix
 56.	In humans, red-green color blindness is		
	a. caused by a recessive allele		
	b. equally common in both sexes		
	c. produced in males by a heterozygous geno	type	
	d. inherited in males from their fathers	_	
 57.	Most human genetic disorders are caused by the	ne ex	apression of
	a. recessive alleles	c.	T
	b. two dominant alleles	d.	

 58.	Individuals with Huntington's disease									
	a.	undergo progressive deterioration of th	ne nervoi	us system						
	b.									
	c.	must have frequent transfusions because	se their l	blood lacks a clotting factor						
	d.	suffer from a form of aneuploidy		Ç						
59.	Αį	phenotypic trait that results from a single	e domina	ant allele is						
	a.	polydactyly	c.	more frequent in its appearance						
	b.	cystic fibrosis	d.	attached earlobes						
 60.	Wl	hich series is arranged in order from larg	gest to sr	nallest in size?						
	a.	chromosome, nucleus, cell, DNA, nucl	leotide							
	b.	cell, nucleus, chromosome, DNA, nucl	leotide							
	c.	cell, nucleotide, nucleus, DNA, chrome	osome							
	d.	nucleotide, chromosome, cell, DNA, n	nucleus							
		=========	=====							