Physics 12-Q2W4-H.W.-Thermodynamics

Multiple Choice

Identify the choice that best completes the statement or answers the question.

 1.	Which thermodynamic process takes place at co	onst	ant volume so that no work is done on or by the system?			
	a. isothermal	c.	isovolumetric			
	b. isobaric	d.	adiabatic			
 2.	as heat and energy transferred to or from a syst	em 1	difference between energy transferred to or from a system by work is equivalent to which of the following?			
	a. volume changeb. internal energy change		entropy change pressure change			
2						
 3.	Which of the following is <i>not</i> a way in which a	cyc	iic process resembles an isotnermal process?			
	a. Energy can be transferred as heat.					
	b. Energy can be transferred as work.	cton	t throughout the process			
	c. The temperature of the system remains con		*			
4	d. There is no net change in the internal energ	-	•			
 4.						
	a. The increases in entropy can be greater or l					
	b. The increases in entropy are always greater					
	c. The increases in entropy are always equal td. The increases in entropy are always less that					
~	• •					
 5.		p so	me energy at a lower temperature in order to do work			
	corresponds to which law of thermodynamics? a. first	0	third			
	b. second		No law of thermodynamics applies.			
6			·			
 6.	Which thermodynamic process takes place who transferred to or from the system as heat?	ii w	ork is done on or by the system but no energy is			
	a. isothermal	C	adiabatic			
	b. isovolumetric		isobaric			
7.	How is conservation of internal energy express					
 /.	a. $Q = 0$, so $\Delta U = -W$	cu i	or an isolated system:			
	b. $Q = W = 0$, so $\Delta U = 0$ and $U_i = U_f$					
	c. $\Delta V = 0$, so $P\Delta V = 0$ and $W = 0$; therefore, $\Delta V = 0$					
	d. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q - W$					
 8.	How does a real heat engine differ from an idea	ıl cy	clic heat engine?			
	a. A real heat engine is not cyclic.	_				
	b. An ideal heat engine converts all energy from					
	c. An ideal heat engine is not isolated, so mat					
	d. A real heat engine is not isolated, so matter		-			
 9.			s in which it expands and does 20 J of work on its			
	environment. How much energy is transferred t		•			
	a. 20 J		5 J			
	b. 0 J		−20 J			
 10.	How is conservation of internal energy express		*			
	a. $\Delta V = 0$, so $P\Delta V = 0$ and $W = 0$; therefore, $\Delta V = 0$	$\Delta U =$	=Q			
	b. $Q = W = 0$, so $\Delta U = 0$ and $U_i = U_f$					
	c. $Q = 0$, so $\Delta U = -W$					
	d. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q - W$	= 0,	or $Q = W$			

 11.	An ideal heat engine has an efficiency of 50 percent. Which of the following statements is <i>not</i> true? a. The amount of energy exhausted as heat is half the energy added to the engine as heat. b. The amount of energy exhausted as heat equals the work done. c. The amount of work done is half the energy added to the engine as heat.					
	d. The amount of energy exhausted as heat equals the energy added to the engine as heat.					
 12.	Which of the following is a set of particles or interacting components to which energy is added or from which energy is removed?					
	a. an ideal gas c. an engine					
	b. an environment d. a system					
 13.	An electrical power plant manages to transfer 88 percent of the heat produced in the burning of fossil fuel to convert water to steam. Of the heat carried by the steam, 40 percent is converted to the mechanical energy of the spinning turbine. Which best describes the overall efficiency of the heat-to-work conversion in the plant? a. greater than 88 percent c. 40 percent					
1.4	b. less than 40 percent d. 88 percent An ideal are system undergoes an isosyalumetric process in which 20 Left apercy is added as best to the res					
 14.	An ideal gas system undergoes an isovolumetric process in which 20 J of energy is added as heat to the gas. What is the change in the system's internal energy? a20 J b. 5 J d. 20 J					
 15.	Which thermodynamic process takes place at a constant temperature so that the internal energy of a system					
	remains unchanged?					
	a. isovolumetric c. isothermal					
	b. isobaric d. adiabatic					
 16. An ideal gas system undergoes an adiabatic process in which it expands and does 20 J of work on i environment. What is the change in the system's internal energy? a20 J c5 J 						
	b. 0 J d. 20 J					
 17.	How is conservation of internal energy expressed for a system during an adiabatic process? a. $\Delta T=0$, so $\Delta U=0$; therefore, $\Delta U=Q-W=0$, or $Q=W$ b. $\Delta V=0$, so $P\Delta V=0$ and $W=0$; therefore, $\Delta U=Q$ c. $Q=0$, so $\Delta U=-W$ d. $Q=W=0$, so $\Delta U=0$ and $U_i=U_f$					
10	•					
 18.	A heat engine has taken in energy as heat and used a portion of it to do work. What must happen next for the engine to complete the cycle and return to its initial conditions? a. It must give up energy as heat to a higher temperature so work can be done on it. b. It must do work to transfer the remaining energy as heat to a lower temperature. c. It must do work to transfer the remaining energy as heat to a higher temperature. d. It must give up energy as heat to a lower temperature so work can be done on it.					
 19.	 When a drop of ink mixes with water, what happens to the entropy of the system? a. The system's entropy increases, and the total entropy of the universe decreases. b. The system's entropy increases, and the total entropy of the universe increases. c. The system's entropy decreases, and the total entropy of the universe increases. d. The system's entropy decreases, and the total entropy of the universe decreases. 					
 20.	Imagine you could observe the individual atoms that make up a piece of matter and that you observe the motion of the atoms becoming more orderly. What can you assume about the system? a. Its entropy is decreasing. b. Its entropy is increasing. c. Positive work is being done on the system. d. It is gaining thermal energy.					

	21.	Which of the following is a thermodynamic process in which a system returns to the same conditions under						
		which it started?	0	an adjabatia process				
		a. an isothermal processb. an isovolumetric process		an adiabatic process a cyclic process				
	22.	_		andings, which of the gas's quantities increases?				
	<i>LL</i> .	a. pressure		temperature				
		b. internal energy		volume				
	23.	Air cools as it escapes from a diver's compress						
	23.	a. isobaric		isothermal				
		b. adiabatic		isovolumetric				
	24.			stem's change in the energy as heat is equivalent to a				
		a. volume	c.	internal energy				
		b. temperature	d.	pressure				
	25.	What accounts for an increase in the temperatu	re o	f a gas that is kept at constant volume?				
		a. Energy has been removed as heat from the	gas.					
		b. Energy has been added as heat to the gas.						
		c. Energy has been added as work done on th	_					
		d. Energy has been removed as work done by		_				
	26.		s an	d absorbs 3.33×10^5 J of heat in the process. Which best				
		describes what happened to this system?		Ita antuonii domoood				
		a. Work was converted to energy.b. Its entropy remained constant.		Its entropy decreased. Its entropy increased.				
	27.	Which of the following is a way to improve the		- *				
	21.	a. increase Q_c		reduce Q_k				
				reduce W_{net}				
	• •	b. increase Q_k		- 				
	28.	How is conservation of internal energy express a. $Q = W = 0$, so $\Delta U = 0$ and $U_i = U_f$						
		b. $\Delta V = 0$, so $P\Delta V = 0$ and $W = 0$; therefore, $\Delta V = 0$	ΔU =	=Q				
		c. $\Delta T = 0$, so $\Delta U = 0$; therefore, $\Delta U = Q - W$	=0,	or $Q = W$				
		d. $Q = 0$, so $\Delta U = -W$						
	29.	What occurs when a system's disorder is increased						
		a. No energy is available to do work.		More energy is available to do work.				
	•	b. No work is done.		Less energy is available to do work.				
	30.	operating in a complete cycle must be true?						
		a. Heat from a high-temperature reservoir equals the entropy increase.b. Heat from a high-temperature reservoir cannot be completely converted to work.						
		b. Heat from a high-temperature reservoir cannot be completely converted to work.c. Heat from a high-temperature reservoir must be completely converted to work.						
		d. Heat from a high-temperature reservoir must be completely converted to internal energy.						
	31.							
	51.	a. $W_{net} = Q_c - Q_h$		$W_{net} = Q - \Delta U$				
		b. $W_{net} = Q_b - Q_c$		$W_{\text{net}} = \mathcal{Q} \Delta C$ $W_{\text{net}} = P\Delta V$				
	32.	- •	ume of 4 L. If the pressure is constant, how much work is					
		done by the system? a. 8 J	C	30 J				
		a. 6 J b. 0 J		5 J				
		J. J.	٠.	~ ~				

33.	A thermodynamic prentropy change of the a. It decreases. b. It increases. c. It could increase	e environment?			es. What can be co	oncluded about the		
	d. It stays the same		<i>C</i> 1					
34.	During an isovolume	etric process, which	of the following	does not chan	ige?			
	a. internal energy	•	c. press					
	b. volume		d. temp	erature				
35.	What thermodynamic process for an ideal gas system has an unchanging internal energy and a heat intake that							
	corresponds to the value of the work done by the system?							
	a. adiabatic			olumetric				
	b. isobaric		d. isoth	ermal				
Problems								
	36. A container of gas is at a pressure of 3.8×10^5 Pa. How much work is done by the gas if its volume expands by 1.8 m^3 ?							
	A. $4.8 \times 10^5 \text{ J}$	B. $5.8 \times 10^5 \text{ J}$	C. 6.8×10^5	J D. 7	$7.8 \times 10^5 \mathrm{J}$			
	37. An engine adds efficiency?	62 000 J of energy a	as heat and remov	ves 17 000 J o	of energy as heat. V	What is the engine's		
	A. 0.63	B. 0.73	C. 0.83	D. 0.9	93			
	38. The gas within a cylinder of an engine undergoes a net change in volume of 1.40×10^{-3} m 10^{3} when it does work at a constant pressure of 3.56×1010^{5} Pa. If the efficiency of the engine is 0.278, how much work must the engine give up as heat to the low-temperature reservoir?							
	A. $1.10 \times 10^3 \text{ J}$	B. $1.15 \times 10^3 \text{J}$	C. 1.20	$\times 10^3 \mathrm{J}$	D. $1.29 \times 10^3 \text{J}$			
	39. A turbine exhausts 62 500 J of energy as heat when it puts out 22 100 J of network. What is the efficient of the turbine?							
	A. 0.261	B. 0.300	C. 0.320	O	D. 0.350			
	40. A total of 198 J energy of the gas heat?					n. If the internal energy transferred as		
	A. –77 J, or 77 J transferred from the system as heat B. –79 J, or 79 J transferred from the system as heat C. –82 J, or 82 J transferred from the system as heat D. –90 J, or 90 J transferred from the system as heat							

41. An engine absorbs 2310 J as heat from a hot reservoir and gives off 830 J as heat to a cold reservoir during each cycle. What is the efficiency of the engine?					
A. 0.60	B. 00.62	C. 0.64	D. 0.66		
42. A steam engine takes in 2.54×1010^5 J of energy added as heat and exhausts 1.75×1010^5 J of energy removed as heat per cycle. What is its efficiency?					
A. 0.311	B. 0.322	C. 0.333	D. 0.344		
43. A gas compressed within a cylinder with a piston with a radius of 5.5 cm is displaced 8.6 cm. What is the net pressure on the gas if the work done on the gas equals –380 J?					
A. 4.0×10^5 Pa C. 4.4×10^5 Pa	B. 4.2×10 D. 4.6×10				
44. An ideal gas is maintained at a constant pressure of 9.8×10^4 N/m 2 while its volume decreases by 0.38 m 3 . What work is done by the system on its environment?					
A. $-3.7 \times 10^4 \text{ J}$	B. $-3.4 \times 10^4 \mathrm{J}$	$C3.2 \times 10^4 \mathrm{J}$	D. $-3.0 \times 10^4 \mathrm{J}$		
45. A heat engine performs 2300.0 J of network while adding 7100.0 J of heat to the low-temperature reservoir. What is the efficiency of the engine?					
A. 0.22468	B. 0.23468	C. 0.24468	D. 0.25468		