Quarter 2 Exams- Revision Sheet- Paper 2- G

c. density

d. pressure

1. Gay-Lussac's law shows a direct relationship between temperature and

Chapter 11/Gases (sec 2)

a. volume

b. composition

2. The combined gas law is expressed by								
	A.	$P_1V_1 =$	P_2V_2					
	B.	P_1V_1/T_1	=	P_1V_2/V_2				
	C.	P_1/T_1	=	P_2/T_2				
	D.	V_1/T_1	=	V_2/T_2				
3. Assuming a	ll other condi	tions are cons	stant, w	hat is the new pressure of a gas if the				
original pressure is 50 kPa and the Kelvin temperature is doubled?								
	25 kPa			c. 100 kPa				
b.	50 kPa			d. 200 kPa				
4. The average kinetic energy of the particles in any gas depends only on the								
a.	volume of th	ne gas.		c. temperature of the gas.				
b.	pressure of t	the gas.		d. number of moles of the gas.				
5. Who developed the concept that the total pressure of a mixture of gases is the sum of their partial pressures? a. Charles c. Dalton								
D.	Boyle			d. Kelvin				
6. A sample of a gas occupies 250. mL at 1.00 atm of pressure. If the pressure increases to 2.00 atm while the temperature stays the same, what is the new volume?								
	500. mL			c. 125 mL				
b.	1.00×10^3			d. 62.5 mL				
7. The gas in an aerosol container is at a pressure of 3.50 atm at 24.0°C. The caution on the container warns against storing it at temperatures above 95°C. What would the gas pressure in the container be at 95°C? a. 4.34 atm c. 13.9 atm								
b.	8.68 atm			d. 84.0 atm				
8. For a fixed amount of gas at a constant temperature, the volume increases as the pressure a. remains steady. c. decreases b. increases. d. fluctuates.								
9. The direct relationship between temperature and volume is known as a. Kelvin's law. c. Boyle's law. b. Charles's law. d. Ayogadro's law.								

Thebes El Maadi International School Science Department Chemistry 2020/2021

Quarter 2 Exams- Revision Sheet- Paper 2- G

- 10. A graph of pressure versus temperature in kelvins of a gas at constant volume and fixed mass is a(n)
 - a. downward curve.
- c. straight line passing through the point (0,0).

b. upward curve.

- d. straight line with a negative slope.
- 11. If the temperature of a gas remains constant, then the pressure of the gas will increase if the
 - a. mass of the gas molecules decreases.
 - b. diffusion of the gas molecules increases.
 - c. size of the container is decreased.
 - d. number of gas molecules in the container is decreased.
- 12. A student inflates a balloon with helium then places it in the freezer. The student should expect
 - a. the balloon's volume to increase.
 - b. the balloon's moles to increase.
 - c. the balloon's volume to decrease.
 - d. the balloon's moles to decrease.
- 13. If a hairspray can is heated, what can be expected of the pressure of the gas inside the can?
 - a. The pressure will increase.
 - b. The pressure will remain constant.
 - c. The pressure will decrease.
 - d. The pressure will equalize.

A. Jacques Charles B. Robert Boyle

C. inverse

- 14. Discovered the quantitative relationship between gas volume and gas pressure.
- 15. Gas volume and gas pressure have this relationship.
- 16. Discovered the relationship between gas volume and temperature.

A. Charles's law B. Gay-Lussac's law C. Boyle's law D. Combined gas law

- 17. The pressure of a fixed mass of gas varies directly with the kelvin temperature at constant volume.
- 18. The volume of a fixed mass of gas varies inversely with the pressure at constant temperature.
- 19. The relationship between pressure, volume, and temperature is expressed by this law.
- 20. The volume of a fixed mass of gas varies directly with the kelvin temperature at constant pressure.

Quarter 2 Exams- Revision Sheet- Paper 2- G

Complete

	O .		C. Bolyle's law G. partial pressure				
21.			between the pressure and				
			between the temperature				
	The single statement		ime, pressure, and tempe	erature of a gas is			
24.	<u>-</u>	-	l volume of a sample of proportion.	gas at constant			
			ndergoes a change in ter				
	=		essure and volume of a f	ixed amount of			
27.	The pressure exerted	by each gas in a mi	xture is called the	of that gas.			
28.	9		L. If the volume increase				
	A. 130°C		mperature of the gas be in C. 150°C				
29.	O. A sample of helium gas has a volume of 250.0 mL when its pressure is 0.935 atm. It the temperature remains constant, what will the pressure of the gas be when it has a volume of 175.0 mL?						
	A. 1.34 atm.	B. 1.44 atm.	C. 1.54 atm.	D. 1.64 atm.			
30.	You collect 552 mL of argon gas at 23.0°C. What volume will the gas occupy at 46.0°C if the pressure remains constant?						
			C. 585 mL.	D. 595 mL.			
31.	The pressure of a 70.0 L sample of gas is 600. mm Hg at 20.0°C. If the temperature drops to 15.0°C and the volume expands to 90.0 L, what will the pressure of the gas be?						
		3. 459 mm Hg.	C. 469 mm Hg. D. 4	79 mm Hg.			
		===	======				