Phys.12- Q2W1- Circular Motion and Gravitation

Problem

1. A new moon is discovered orbiting Neptune with an orbital speed of 9.11×10^3 m/s. Neptune's mass is 1.0×10^{26} kg. What is the radius of the new moon's orbit? What is the orbital period? Assume that the orbit is circular. ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)

- A- $6.0 x 10^7 m; 3.5 x 10^4 s$
- B- $7.0 ext{ x } 10^7 ext{ m; } 4.5 ext{ x } 10^4 ext{ s}$
- C- $8.0 \times 10^7 \text{ m}$; $5.5 \times 10^4 \text{ s}$
- D- 9.0 x 10^7 m; 6.5 x 10^4 s
- 2. A 4.2 m board with a mass of 19 kg is pivoted at its center of gravity. A helium balloon attached 0.24 m from the left end of the board produces an upward force of 7.1 N. A 3.5 kg book is placed 0.74 m from the left end of the board, and another book of 1.7 kg is placed 0.77 m from the right end of the board. Find the torque on the board and the direction of rotation.
 - A- 13 N.m counterclockwise
 - B- 15 N.m counterclockwise
 - C- 17 N.m counterclockwise
 - D- 19 N.m counterclockwise
- 3. A boy can raise a rock that weighs 95 N by using a lever and applying a force of 17 N. What is the mechanical advantage of the lever?
 - A. 2.6
 - B. 3.6
 - C. 4.6
 - D. 5.6
- 4. A new planet is discovered orbiting a star with a mass 3.5×10^{31} kg at a distance of 1.2×10^{11} m. Assume that the orbit is circular. What is the orbital speed of the planet? ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)
 - A- $1.4 \times 10^5 \text{ m/s}$
 - B- $1.4 \times 10^5 \text{ m/s}$
 - C- $1.4 \times 10^5 \text{ m/s}$
 - D- 1.4 x 10^5 m/s

- 5. What is the orbital period of the planet? $(G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
 - A- $3.4 \times 10^6 \text{ s}$

 - D- $6.4 \times 10^6 \text{ s}$
- 6. A bucket filled with water has a mass of 33 kg and is attached to a rope wound around a cylinder with a radius of 0.043 m at the top of a well. What torque does the weight of the water and bucket produce on the cylinder? $(g = 9.81 \text{ m/s}^2)$
 - A- 10 N.m
 - B- 12 N.m
 - C- 14 N.m
 - D- 16 N.m
- 7. How much energy would be required to do 971 J of work with a machine that was 25% efficient?
 - $A 0.9 \times 10^3 J$
 - B- $1.9 \times 10^3 \text{ J}$
 - $C- 2.9 \times 10^3 J$
 - D- $3.9 \times 10^3 \text{ J}$
- 8. A 35 kg child moves with uniform circular motion while riding a horse on a carousel. The horse is 3.2 m from the carousel's axis of rotation and has a tangential speed of 2.6 m/s. What is the child's centripetal acceleration?
 - A- 1.1 m/s^2
 - B- 2.1 m/s^2
 - C- 3.1 m/s^2
 - D- 4.1 m/s^2
- 9. A 69.8 kg student sits at a desk 1.75 m away from a 78.9 kg student. What is the magnitude of the gravitational force between the two students? ($G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)
 - A- 0.20 x 10⁻⁷ N
 - B- $1.20 \times 10^{-7} \text{ N}$
 - $C- 2.20 \times 10^{-7} \text{ N}$
 - D- $3.20 \times 10^{-7} \text{ N}$
- 10. A satellite in a circular orbit experiences a centripetal acceleration of $8.89~\text{m/s}^2$. The tangential speed of the satellite is 7.76×10^3 m/s. What is the altitude of the satellite? ($r_{\mathbb{F}} = 6.38 \times 10^6$ m)
 - A- 290 km
 - B- 390 km
 - C- 490 km
 - D- 590 km

Multiple Choice
Identify the choice that best completes the statement or answers the question.

 11.	5	•	• •
	a. gravitational mass.		inertial mass.
	b. weight.		gravitational field strength.
 12.	When an object is moving with uniform circula	ır m	otion, the object's tangential speed
	a. is constant.		
	b. is directed toward the center of motion.		
	c. is perpendicular to the plane of motion.		
	d. is circular.		
 13.	What quantity measures the output force of a m		*
	a. torque		mechanical advantage
1.4	b. efficiency		leverage
 14.			. What causes the ball to move off in a straight line?
	a. centripetal force		centrifugal force inertia
1.5	b. centripetal acceleration		
 15.	What quantity measures the work done by a management and adventage		
	a. mechanical advantageb. efficiency	d.	leverage torque
16	•		-
 16.	Why does an astronaut weigh less on the moon a. The astronaut is farther from Earth's center		
	a. The astronaut is farther from Earth's centerb. The gravitational field strength is less on the		
	c. The astronaut has less mass on the moon.	10 111	fool 3 surface than on Earth 3 surface.
	d. The astronaut is continually in free fall bec	ause	e the moon orbits Earth.
17.	•		ch other with a force of 10.0 N. When they are 5.0 cm
 1,.	apart, these masses will attract each other with		
	a. 5.0 N		2.5 N
	b. 20.0 N		40.0 N
18.	The equation for the speed of an object in circu	lar (orbit is $v_t = \sqrt{G \frac{m}{r}}$. What does m represent in this
			· v /
	equation?	_	the mass of the control shipst
	a. the mass of the sunb. the mass of the orbiting object		the mass of the central object the mass of Earth
10			
 19.	What is the term for the net force directed towa		orbital force
	a. centripetal forceb. circular force		centrifugal force
20			_
 20.			N. What is the gravitational force if the distance between
	them is tripled? $(G = 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$		40.34
	a. 27 N		4.0 N
21	b. 18 N		9.0 N
 21.	Where should a force be applied on a lever arm	to j	produce the most torque?
	a. in the middle of the lever armb. farthest from the axis of rotation		
	c. It doesn't matter where the force is appliedd. closest to the axis of rotation	•	
	d. Closest to the axis of foldion		

 22.	a. inertial mass. c. w	eight.
	b. gravitational field strength. d. gr	ravitational mass.
	Δt_1 A_1 Sun A_2 Δt	2
 23.		netary motion,
	a. $A_{I} = A_{2}$. c. if	$\Delta t_I = \Delta t_2$, then $A_I = A_2$.
	b. if $\Delta t_1 = \Delta t_2$, then the orbit is circular. d. Δ	$t_1 > \Delta t_2$.
24.		
	a. differences in Earth's gravitational field strength	at different points on Earth's surface.
	b. fluctuations in the gravitational attraction between	Earth and the moon.
	c. differences in the gravitational force of the moon	•
	d. differences in the gravitational force of the sun at	different points on Earth.
 25.	5. An iron bar is used to lift a slab of cement. The force	applied to lift the slab is 4.0×10^2 N. If the slab weighs
	6400 N, what is the mechanical advantage of the bar?	
	a. 6000 c. 10	
	b. 1.6 d. 6.	3%
 26.	E I	
	•	ravity
	b. friction d. al	l of the above
	A child rides a bicycle in a circular path with a radius The combined mass of the bicycle and the child is 43	of 2.0 m. The tangential speed of the bicycle is 2.0 m/s. kg.
27.	7. What kind of force provides the centripetal force on the	ne bicycle?
	a. normal force c. fr	· · · · · · · · · · · · · · · · · · ·
	b. gravitational force d. ai	r resistance
 28.	3. What is the magnitude of the centripetal force on the l	picycle?
	a. 4.0 N c. 3.	
	b. 86 N d. 43	3 N
 29.	8.3	s the constant of universal gravitation?
	a. F_c c. g	
	b. <i>G</i> d. <i>F</i>	g.
30.). When an object is moving with uniform circular motion	on, the centripetal acceleration of the object
	a. is circular.	
	b. is directed toward the center of motion.	
	c. is perpendicular to the plane of motion.	
	d. is zero.	

 31.	The centripetal force on an object in circular motion is			
	a. in the plane of the object's motion and in the same direction as the tangential speed.			
	b. perpendicular to the plane of the object's motion.			
	c. in the plane of the object's motion and in the direction opposite the tangential speed.			
	d. in the plane of the object's motion and perpendicular to the tangential speed.			
 32.	Newton's law of universal gravitation			
	a. can be used to derive Kepler's third law of planetary motion.			
	b. can be used to disprove Kepler's laws of planetary motion.			
	c. is equivalent to Kepler's first law of planetary motion.d. does not apply to Kepler's laws of planetary motion.			
22				
 33.	1			
	 a. It would decrease by a factor of 2. b. The speed would not change. c. It would increase by a factor of 4. d. It would increase by a factor of 2. 			
2.4				
 34.				
	mechanic is 133 N, how far from the nut must the mechanic apply the force? a. 1.20 m c. 30.1 cm			
	b. 15.0 cm d. 60.2 cm			
25	Which of the following confirms that gravitational mass and inertial mass are equivalent?			
 35.	a. Free-fall acceleration is the same at all points where the gravitational field strength is the			
	same.			
	b. An object's weight can change with location, but the object's mass remains constant.			
	c. Free-fall acceleration is the same throughout the universe.			
	d. Newton's second law is valid throughout the universe.			
36.				
 50.	a. 2.9% c. 65%			
	b. 35% d. 29%			
37.	When calculating the gravitational force between two extended bodies, you should measure the distance			
	a. from the closest points on each body.			
	b. from the center of one body to the closest point on the other body.			
	c. from the center of each body.			
	d. from the most distant points on each body.			
 38.	A girl pushes a box that has a mass of 450 N up an incline. If the girl exerts a force of 150 N along the incline,			
	what is the mechanical advantage of the incline?			
	a. 33% c. 300			
	b. 3.0 d. 0.33			
 39.	Suppose a doorknob is placed at the center of a door. Compared with a door whose knob is located at the			
	edge, what amount of force must be applied to this door to produce the torque exerted on the other door?			
	a. four times as much c. two times as much			
	b. one-half as much d. one-fourth as much			
 40.	If you want to open a swinging door with the least amount of force, where should you push on the door?			
	a. in the middle c. close to the hinges			
	b. as far from the hinges as possible d. It does not matter where you push.			
