40000000004

Passage V

A cathode-ray tube (CRT) is a scaled, evacuated glass tube with a filament at one end and a fluorescent screen at the other end (see Figure 1).

Figure 1

Figure 1 adapted from David Halliday, Robert Resnick, and Jearl Walker, Fundamentals of Physics, 9th ed. ©2011 John Wiley & Sons, Inc.

When heated, the filament emits cathode rays that are accelerated by an electric potential, V, toward a barrier having a pinhole. Beyond the barrier are 2 conducting plates, each of length L, that have an electric field, E, between them. (The direction of E can be upward or downward; in Figure 1, it is downward.) Any rays that pass through the pinhole travel through the field and strike the screen, producing a bright spot of visible light.

A group of students performed 3 studies on various CRTs, each of which had a ruler taped to the outer surface of the screen (see Figure 2) to measure a spot's vertical location, y (in centimeters, cm).

Figure 2

Study I

The students obtained a CRT having L = 2.5 cm. They set V to 1.0 kilovolt (kV), varied both the direction and the magnitude (in newtons per coulomb, N/C) of E, and recorded the resulting values of y (see Table 1).

	E		
Trial	direction*	magnitude (N/C)	y (cm)
1	1	1.0 × 10 ⁴	-3.2
2	1	2.0×10^{4}	-6.3
3	1	3.0×10^4	-9.5
4	1	1.0 × 10 ⁴	3.2
5	1	2.0×10^4	6.3
5	1	3.0×10^{4}	9.5

Study 2

Using the CRT from Study 1, the students set the magnitude of E to 1.0×10^4 N/C, varied V, and recorded the resulting values of y (see Table 2).

Table 2					
Trial	V(kV)	y (cm)			
7	0.5	6.3			
8	1.0	3.2			
9	1.5	2.1			
10	2.0	1.6			
11	2.5	1.3			

Study 3

The students obtained various CRTs, each having a different L. For each CRT, they set V to $1.0 \,\mathrm{kV}$, set the magnitude of E to $1.0 \times 10^4 \,\mathrm{N/C}$, and recorded the resulting value of y (see Table 3).

Table 3				
Trial	L (cm)	y (cm)		
12 13 14 15 16	1.5 2.0 2.5 3.0 3.5	-2.0 -2.6 -3.2 -3.8 -4.4		

- 28. Studies 1 and 2 differed in which of the following ways? In Study 1, the students determined how the spot's location varied with:
 - F. electric potential, whereas in Study 2, they determined how the spot's location varied with the magnitude and direction of the electric field.
 - plate length, whereas in Study 2, they determined how the spot's location varied with electric potential.
 - H. the magnitude and direction of the electric field, whereas in Study 2, they determined how the spot's location varied with electric potential.
 - plate length, whereas in Study 2, they determined how the spot's location varied with the magnitude and direction of the electric field.
- 29. Suppose that the students had performed a trial in Study 2 in which y was 2.6 cm. The value of V in this trial would most likely have been:
 - A. less than 1.0 kV.

 - between 1.0 kV and 1.5 kV. between 1.5 kV and 2.0 kV.
 - D. greater than 2.0 kV.
- 30. Figure 2 could serve as an illustration of the result(s) of which trial(s)?
 - Trial 1 only
 - Trial 8 only G.
 - H. Trials 1 and 4 only
 - Trials 4 and 8 only
- 31. Based on the results of Study 1, in which direction did E most likely point in Study 2, and in which direction did E most likely point in Study 3?

	Study 2	Study 3
A.	1	1
В.	1	1
C.	1	1
D.	1	1

- 32. Once a CRT is sealed, it cannot be reopened. However, because both V and E are controlled from the outside, a CRT can be used repeatedly under varying conditions. Based on the descriptions of Studies 1-3, what is the minimum number of different CRTs that the students required to complete the 3 studies?
 - F. G.
 - H. 11

 - J. 16
- 33. Suppose that the students had performed a trial in which the cathode rays traveled all the way from the filament to the screen in a straight-line path, striking the screen at y = 0 cm. Based on the results of Studies 1 and 2, which of the following statements about V and the magnitude of E in this trial would have been true?
 - V was zero but the magnitude of E was nonzero.
 - B. V was nonzero but the magnitude of E was zero.
 - Both V and the magnitude of E were zero.
 - D. Both V and the magnitude of E were nonzero.
- 34. In a CRT, E is generated by building up equal and opposite electric charges on the 2 conducting plates. Suppose that cathode rays are negatively charged. If E is directed downward as shown in Figure 1, which conducting plate is more likely the negatively charged plate?
 - F. The top plate, because charges of like sign are attracted to each other.
 - G. The top plate, because charges of like sign are repelled from each other.
 - H. The bottom plate, because charges of like sign are attracted to each other.
 - The bottom plate, because charges of like sign are repelled from each other.