## Bio.12-Q1W6- Qs. Bank-Cyto- Cell Energy -

## **Multiple Choice**

| Identi | fv | the | choice | e that | best | comp | oletes | the | statement | or | answers t | he | question. |
|--------|----|-----|--------|--------|------|------|--------|-----|-----------|----|-----------|----|-----------|
|        |    |     |        |        |      |      |        |     |           |    |           |    |           |

| <br>1.  | Which of the following is NOT part of a molec    | ule   | of ATP?                                                                                                      |
|---------|--------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
|         | a. Ribose sugar                                  | c.    | Deoxyribose sugar                                                                                            |
|         | b. Adenosine                                     | d.    | Phosphate group                                                                                              |
| <br>2.  | ATP stores energy for use in several cellular fu | ıncti | ons. Which of the following does NOT require the                                                             |
|         | breakdown of ATP?                                |       |                                                                                                              |
|         | a. Bioluminescence                               | c.    | Flagella movement                                                                                            |
|         | b. Enzyme production                             | d.    | Diffusion                                                                                                    |
| 3.      | Which of the following is a product of photosy   | nthe  | esis?                                                                                                        |
|         | a. ATP                                           | c.    | ***                                                                                                          |
|         | b. Glucose                                       | d.    | Carbon dioxide                                                                                               |
| 4.      | Chlorophyll is the primary pigment in plant ch   | loro  | plasts. It absorbs all wavelengths of light, EXCEPT —                                                        |
|         | a. green.                                        |       | yellow.                                                                                                      |
|         | b. red.                                          | d.    |                                                                                                              |
| 5.      | Where is the electron transport chain located in | the   | light-dependent reactions?                                                                                   |
| <br>٠.  | a. Nucleus                                       |       | Thylakoid membrane                                                                                           |
|         | b. Mitochondria                                  | d.    | Cytoplasm                                                                                                    |
| 6.      | Where do the light-independent reactions of ph   |       | · ·                                                                                                          |
| <br>0.  | a. Stroma                                        |       | Mitochondria                                                                                                 |
|         | b. Thylakoid membrane                            | d.    |                                                                                                              |
| 7.      | Which of the following is a reactant in photoly  |       | Cen wan                                                                                                      |
| <br>7.  | a. Electron                                      | S1S : | Proton                                                                                                       |
|         | b. Oxygen                                        |       | Water                                                                                                        |
| 0       | · -                                              |       |                                                                                                              |
| <br>8.  | · -                                              |       | to reenter the cycle as a reactant. Which of the following the Calvin cycle and is then produced at the end? |
|         | a. ATP                                           |       | Phosphoglyceric acid                                                                                         |
|         | b. Ribulose biphosphate                          | d.    | Carbon dioxide                                                                                               |
| 0       |                                                  |       | Carbon dioxide                                                                                               |
| <br>9.  | Which of the following processes is anaerobic:   |       | Electron transport chain                                                                                     |
|         | a. Glycolysis                                    |       | Electron transport chain All of the above                                                                    |
| 10      | b. Citric acid cycle                             |       |                                                                                                              |
| <br>10. | In the absence of oxygen, yeast cells undergo f  |       |                                                                                                              |
|         | a. lactic acid.                                  | C.    | $\mathcal{E}$                                                                                                |
|         | b. oxygen.                                       |       | ethyl alcohol.                                                                                               |
| <br>11. | The main energy-trapping molecule in plants is   |       |                                                                                                              |
|         | a. chloroplast                                   |       | stroma                                                                                                       |
|         | b. chlorophyll                                   |       | carotenoids                                                                                                  |
| <br>12. | 8, 8, 11, 11, 11, 11, 11, 11, 11, 11, 11         |       |                                                                                                              |
|         | a. citric acid cycle                             |       | electron transport chain                                                                                     |
|         | b. mitochondria                                  | d.    | thylakoid membranes                                                                                          |
| <br>13. | Chlorophyll traps from sunlight.                 |       |                                                                                                              |
|         | a. oxygen                                        | c.    | hydrogen                                                                                                     |
|         | b. energy                                        | d.    | glucose                                                                                                      |
| <br>14. | A green pigment that traps energy from sunligh   | nt is |                                                                                                              |
|         | a. carotenoid                                    |       | chlorophyll                                                                                                  |

|         | b. ATP                                                 | d.    | thylakoid membranes                                        |
|---------|--------------------------------------------------------|-------|------------------------------------------------------------|
| 15.     | Which sugar is a part of adenosine diphosphate         | ?     |                                                            |
|         | a. adenine                                             |       | glucose                                                    |
|         | b. ribose                                              | d.    | glycogen                                                   |
| <br>16. | Energy is released from ATP when the bond is           | bro   | ken between                                                |
|         | a. two phosphate groups                                | c.    | ribose and a phosphate group                               |
|         | b. adenine and ribose                                  | d.    | adenine and a phosphate group                              |
| <br>17. | Organisms need a way of storing energy becau           | se _  |                                                            |
|         | a. a cell can't always immediately use all the         | ener  | gy it gets                                                 |
|         | b. an organism often has times when no energ           | gy is | used                                                       |
|         | c. a cell can release only stored energy               |       |                                                            |
|         | d. a cell cannot create energy and must get it         |       | -                                                          |
| <br>18. | In order to move molecules in your kidneys, yo         | our b | oody needs                                                 |
|         | a. energy                                              |       | cold                                                       |
|         | b. sunlight                                            |       | heat                                                       |
| <br>19. | In the complete process of photosynthesis, the         |       | <u>_</u> ·                                                 |
|         | a. Calvin cycle yields CO <sub>2</sub>                 |       |                                                            |
|         | b. light reactions release oxygen                      |       |                                                            |
|         | c. Calvin cycle breaks down H <sub>2</sub> O           | DII   | 11+                                                        |
| 20      | d. light reactions produce NADP <sup>+</sup> from NAD  |       |                                                            |
| <br>20. |                                                        | a in  | the first step, and molecules of ATP are produced in       |
|         | the second step. a. four, two                          | 0     | two two                                                    |
|         | b. two, four                                           |       | two, two<br>four, four                                     |
| 21.     | In respiration, the final electron acceptor in the     |       |                                                            |
| <br>21. | a. oxygen                                              |       | hydrogen ions                                              |
|         | b. ATP                                                 |       | H <sub>2</sub> O                                           |
| 22.     |                                                        |       | order to keep the blood chemically balanced. This process  |
| <br>,   | is an example of cells using energy to                 |       | order to heep the cross environmy culture and ring process |
|         | a. carry on chemosynthesis                             | c.    | control body temperature                                   |
|         | b. transmit impulses                                   |       | maintain homeostasis                                       |
| 23.     | Which of the following equations best represen         | its p | hotosynthesis?                                             |
|         |                                                        | _     | $6C + 6H_2O \rightarrow C_6H_{12}O_6$                      |
|         | b. $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$     |       |                                                            |
| 24.     | Leaves appear green because the green portion          |       |                                                            |
|         | a. changed to heat                                     |       | destroyed                                                  |
|         | b. absorbed                                            |       | reflected                                                  |
| 25.     | Cells store energy when                                |       |                                                            |
|         | a. the third phosphate group breaks off from a         | an A  | TP molecule                                                |
|         | b. they break down sucrose to glucose and fru          | ictos | se se                                                      |
|         | c. a third phosphate group is bonded to an AT          | TP m  | nolecule                                                   |
|         | d. ions are released into the bloodstream              |       |                                                            |
| <br>26. | The energy in glucose <u>cannot</u> be released by     |       |                                                            |
|         | a. glycolysis                                          |       | respiration                                                |
|         | b. burning                                             |       | photosynthesis                                             |
| <br>27. | Which of the following is <u>not</u> a part of adenosi |       |                                                            |
|         | a. glucose                                             |       | ribose                                                     |
|         | b. adenine                                             | d.    | two phosphate groups                                       |

28. Which of the diagrams in Figure 9-2 best show how energy is produced in a cell?

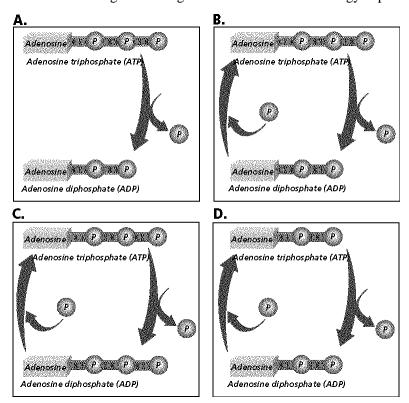



Figure 9-2

a. A c. C b. B d. D

29. Which of the processes shown in Figure 9-3 do not use a cell's energy?

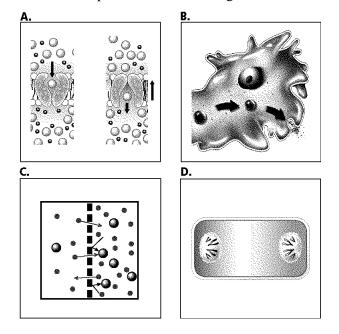



Figure 9-3

a. A c. C b. B d. D

\_\_\_\_ 30. What is the main purpose of the cycle shown in Figure 9-4?

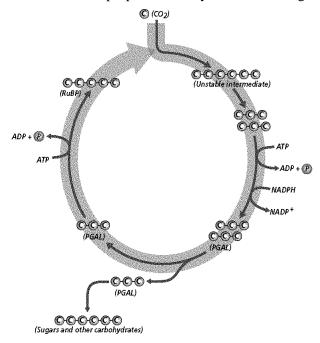



Figure 9-4

- a. sugar production
- b. destruction of CO<sub>2</sub>

- c. production of ADP
- d. production of NADP
- 31. In which types of organisms does the process shown in Figure 9-5 take place?

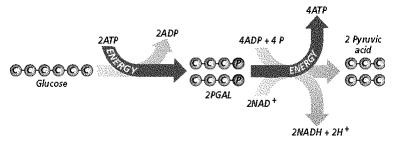



Figure 9-5

- a. plants only
- b. animals only

- c. neither plants nor animals
- d. both plants and animals

### Completion

Complete each statement.

- 32. A series of reactions in aerobic respiration that begins and ends with the same 6-carbon compound is the
- 33. In photosynthesis, the series of reactions that synthesize simple sugars from carbon dioxide and hydrogen is known as the \_\_\_\_\_\_.

| 34. | The anaerobic process of splitting glucose to form pyruvic acid is called                               |
|-----|---------------------------------------------------------------------------------------------------------|
| 35. | The splitting of water during photosynthesis is                                                         |
| 36. | The passing of electrons along a series of molecules, releasing energy as they go, is known as a(n)     |
|     | ·                                                                                                       |
| 37. | The process by which autotrophs use energy from sunlight to build carbohydrates is called               |
|     | ·                                                                                                       |
| 38. | The reactions in photosynthesis in which energy from the sun is converted to chemical energy are called |
|     |                                                                                                         |

#### **Short Answer**

- 39. Compare and contrast the terms *photosynthesis* and *cellular respiration*.
- 40. Compare and contrast the terms aerobic process and anaerobic process.
- 41. What do you think would happen to a plant's energy-trapping ability if suddenly the only pigment it contained was chlorophyll? What is your reasoning?
- 42. How is ATP obtained from aerobic processes?
- 43. Predict what would happen if all the ATP production in living things suddenly ceased.
- 44. How is energy stored in ATP?
- 45. How does the storage of energy in ATP molecules benefit a cell?
- 46. If you run or ride a bicycle as fast as you can, your muscles may begin to feel weak and have a burning sensation. Explain what is occurring that accounts for this muscle fatigue.
- 47. Explain what is meant by carbon fixation. During which stage of photosynthesis does this process take place?
- 48. Both the wine industry and the bread industry use the process of alcoholic fermentation. In what ways is the use of the process by these industries similar? In what way do the uses differ?
- 49. Maintaining body temperature, transmitting nerve impulses, movement of cilia, and bioluminescence are various activities of organisms. What requirement do these activities have in common? Why is ATP important in each activity?
- 50. In an experiment to determine whether green plants take in CO<sub>2</sub>, a biologist filled a large beaker with aquarium water to which she added bromothymol blue. She exhaled CO<sub>2</sub> into the solution of bromothymol blue to turn it yellow. Then she placed a sprig of *Elodea* into two test tubes. She left the third test tube without *Elodea* to serve as a control. She added the yellow bromothymol solution to all three test tubes and placed a stopper in each. Next, she placed all the test tubes in sunlight. After several hours in sunlight, the bromothymol solution in the test tubes with the *Elodea* turned blue. The bromothymol solution in the control remained yellow. What conclusion can be drawn from the observations? Explain.

| Molecular Yield of ATP per Glucose Molecule |              |          |  |  |  |  |  |  |
|---------------------------------------------|--------------|----------|--|--|--|--|--|--|
| Reaction                                    | ATP Produced | ATP Used |  |  |  |  |  |  |
| Glycolysis                                  | 4            | 2        |  |  |  |  |  |  |
| Production of Acetyl-CoA                    |              | 2        |  |  |  |  |  |  |

| Citric acid cycle        | 2  |  |
|--------------------------|----|--|
| Electron transport chain | 34 |  |

Table 9-1

- 51. Refer to Table 9-1. The combination of glycolysis and fermentation yields a net gain of two ATP molecules. How many molecules of ATP does fermentation yield? Explain.
- 52. What is the total net gain in ATP molecules per glucose molecule? Refer to Table 9-1.
- 53. Referring to Table 9-1, what is the net production of ATP molecules by <u>each</u> of the four reactions?

In 1803, Thomas Engelmann of Germany used a combination of filamentous alga and aerobic bacteria to study the effect of various colors of the visible light spectrum on the rate of photosynthesis. He passed white light through a prism in order to separate the light into the different colors of the spectrum; then he exposed different segments of the alga to the various colors. He observed in which areas of the spectrum the greatest number of bacteria appeared.

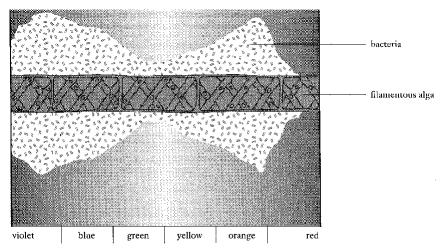



Figure 9-1

- 54. Did Engelmann's observations verify his hypothesis? Explain. Refer to Figure 9-1.
- 55. Describe one control Engelmann might have used. Refer to Figure 9-1.
- 56. What was the independent variable in this experiment? You may refer to Figure 9-1.
- 57. Based on Figure 9-1, what would Engelmann's conclusion be?
- 58. Why did Engelmann select aerobic rather than anaerobic bacteria? See Figure 9-1.
- 59. Referring to Figure 9-1, how was the observation about the amount of oxygen present related to Engelmann's purpose?
- 60. Was determining where there was more oxygen the purpose of Engelmann's experiment? If not, state the purpose. You may refer to Figure 9-1.

# Bio.12-Q1W6- Qs. Bank-Cyto- Cell Energy - Answer Section

### **MULTIPLE CHOICE**

1. ANS: C

ATP, or adenosine triphosphate, is composed of adenosine, ribose, and a phosphate group.

PTS: 1

2. ANS: D

The energy stored in ATP is used for molecular synthesis, maintenance of homeostasis, cell movement, and bioluminescence. Diffusion does not require energy.

PTS: 1

3. ANS: B

Photosynthesis uses carbon dioxide, water, and energy to form glucose and oxygen.

PTS: 1

4. ANS: A

Chlorophyll absorbs most wavelengths of light, except green light, which it reflects. This gives leaves their green color.

PTS: 1

5. ANS: C

Energized electrons are transported by a series of proteins that are embedded in the thylakoid membrane.

PTS: 1

6. ANS: A

The light-independent reactions take place in the stroma of the chloroplast and produce carbohydrates using the products of the light-dependent reactions.

PTS: 1

7. ANS: D

Photolysis is the splitting of two molecules of water to produce oxygen and electrons.

PTS: 1

8. ANS: B

Ribulose biphosphate combines with carbon dioxide to start the Calvin cycle. It is then reformed at the end of the cycle and released to restart the cycle.

PTS: 1

9. ANS: A

Glycolysis takes place in the cytoplasm of cells and can occur in the absence of oxygen.

PTS: 1

10. ANS: D

Under anaerobic conditions, fermentation follows glycolysis. Yeast cells perform alcoholic fermentation to produce ethyl alcohol and carbon dioxide.

|     | P                           |       |   |      |          |      |     |
|-----|-----------------------------|-------|---|------|----------|------|-----|
| 11. | PTS: 1<br>ANS: B            | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
|     | NAT: C1   C5   G1           |       |   |      |          |      | , - |
| 12. | ANS: D                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
|     | NAT: C1   C5   G1           |       |   |      |          |      |     |
| 13. | ANS: B<br>NAT: C1   C5   G1 | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
| 14. | ANS: C                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
|     | NAT: C1   C5   G1           |       |   |      |          |      |     |
| 15. | ANS: C                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
| 1.0 | NAT: C1   C5                | DEC   | 1 | DIE  | D        | ODI  | 0.2 |
| 16. | ANS: A<br>NAT: C1   C5      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
| 17. | ANS: A                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-1 |
|     | NAT: C1   C5                |       |   |      |          |      |     |
| 18. | ANS: A                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-1 |
| 10  | NAT: C1   C5                | DTC.  | 1 | DIE. | D        | ODL  | 0.4 |
| 19. | ANS: B<br>NAT: C1   C5   G1 | PTS:  | 1 | DIF: | В        | OBJ: | 9-4 |
| 20  | ANS: B                      | PTS:  | 1 | DIF: | В        | OBJ: | 0.7 |
| 20. | NAT: C1   C5                | F15.  | 1 | DIF. | Б        | Obj. | 9-1 |
| 21  | •                           | PTS:  | 1 | DIF: | В        | OBJ: | 0.7 |
| 21. | NAT: C1   C5                | 115.  | 1 | DII. | D        | ODJ. | 9-1 |
| 22  | ANS: D                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-1 |
|     | NAT: C1   C5                | 1 12. | - | 211. | _        | 020. | , - |
| 23. | ANS: B                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
|     | NAT: C1   C5   G1           |       |   |      |          |      |     |
| 24. | ANS: D                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-3 |
|     | NAT: C1   C5   G1           |       |   |      |          |      |     |
| 25. | ANS: C                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
|     | NAT: C1   C5                |       |   |      |          |      |     |
| 26. | ANS: D                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
|     | NAT: C1   C5                |       |   |      |          |      |     |
| 27. | ANS: A                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
| • • | NAT: C1   C5                |       |   |      | _        |      |     |
| 28. | ANS: B                      | PTS:  | 1 | DIF: | В        | OBJ: | 9-2 |
| 20  | NAT: C1   C5                | DTC   | 1 | DIE  | <b>A</b> | ODI  | 0.1 |
| 29. | ANS: C                      | PTS:  | 1 | DIF: | A        | OBJ: | 9-1 |
| 20  | NAT: C1   C5<br>ANS: A      | DTC.  | 1 | DIE. | ٨        | OBJ: | 0.5 |
| 50. | NAT: C1   C5   G1           | PTS:  | 1 | DIF: | A        | ODJ. | 7-3 |
| 31  | ANS: D                      | PTS:  | 1 | DIF: | A        | OBJ: | 9-7 |
| 51. | NAT: C1   C5                | 110.  | 1 | DII. | 11       | ODJ. | )-1 |
|     | 1.111. 01   03              |       |   |      |          |      |     |

### **COMPLETION**

32. ANS: citric acid cycle

| 33. | PTS:<br>ANS: | 1<br>Calvin cycle    | DIF:             | В | OBJ: | 9-7 | NAT: C1 | C5      |
|-----|--------------|----------------------|------------------|---|------|-----|---------|---------|
| 34. | PTS:<br>ANS: | 1<br>glycolysis      | DIF:             | В | OBJ: | 9-5 | NAT: C1 | C5   G1 |
| 35. | PTS:<br>ANS: | 1<br>photolysis      | DIF:             | В | OBJ: | 9-6 | NAT: C1 | C5   G1 |
| 36. | PTS:<br>ANS: | 1 electron transp    | DIF:<br>port cha | _ | OBJ: | 9-4 | NAT: C1 | C5   G1 |
| 37. | PTS:<br>ANS: | 1<br>photosynthesi   | DIF:             | В | OBJ: | 9-4 | NAT: C1 | C5   G1 |
| 38. | PTS:<br>ANS: | 1<br>light reactions | DIF:             | В | OBJ: | 9-3 | NAT: C1 | C5   G1 |
|     | PTS:         | 1                    | DIF:             | В | OBJ: | 9-4 | NAT: C1 | C5   G1 |

### SHORT ANSWER

### 39. ANS:

Both are complex groups of reactions that involve energy, require enzymes, occur in specific organelles, and involve movement of electrons. In photosynthesis, energy is stored when CO<sub>2</sub> and H<sub>2</sub>O combine to form sugar or starch and release oxygen as a waste. In (aerobic) respiration, energy is released when sugar is broken down in the presence of oxygen; CO<sub>2</sub> and H<sub>2</sub>O are given off as wastes.

PTS: 1 DIF: B OBJ: 9-7 NAT: C1 | C5

40. ANS:

Aerobic processes require oxygen; anaerobic processes do not.

PTS: 1 DIF: B OBJ: 9-6 NAT: C1 | C5 | G1

41. ANS:

The plant's energy-trapping ability would decrease because the other pigments transfer energy from colors of light that chlorophyll does not absorb well.

PTS: 1 DIF: A OBJ: 9-3 NAT: C1 | C5 | G1

42. ANS:

Answers may include: Aerobic respiration in the mitochondria begins with the production of pyruvic acid from glycolysis. The citric acid cycle and electron transport chain produce additional ATP molecules as the carbohydrate is broken down into water and carbon dioxide.

PTS: 1 DIF: A OBJ: 9-7 NAT: C1 | C5

43. ANS:

Answers may include: Everything would die. All living things require a constant supply of ATP for their cell activities.

| 44. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               |                  |          | 9-1                | NAT: C1   C5                                                                     |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|--------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
|     | Energy is stored in the phosphate bonds of ATP as ATP is synthesized from other materials.                                                                                                        |                                                                                                                                                                                                                                                    |                  |          |                    |                                                                                  |  |  |  |  |  |
| 15  | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-2                | NAT: C1   C5                                                                     |  |  |  |  |  |
| 43. |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                  | cesses.  | These life proce   | esses result in work being done whenever                                         |  |  |  |  |  |
| 46. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-2                | NAT: C1   C5                                                                     |  |  |  |  |  |
|     | The rate at which ox anaerobic lactic acid                                                                                                                                                        | The rate at which oxygen is supplied to the muscles limits the aerobic respiration that can occur. As a result, anaerobic lactic acid fermentation, changing pyruvic acid to lactic acid occurs. The buildup of lactic acid causes muscle fatigue. |                  |          |                    |                                                                                  |  |  |  |  |  |
| 47  | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | В                | OBJ:     | 9-6                | NAT: C1   C5   G1                                                                |  |  |  |  |  |
| 77. |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                  | ycle, wl | nen an enzyme      | adds the carbon atom from atmospheric                                            |  |  |  |  |  |
| 48. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | В                | OBJ:     | 9-5                | NAT: C1   C5   G1                                                                |  |  |  |  |  |
|     | Both use yeast to produce alcohol and carbon dioxide. In the wine industry, the alcohol remains in the wine; the bread industry uses the carbon dioxide to make the bread dough rise.             |                                                                                                                                                                                                                                                    |                  |          |                    |                                                                                  |  |  |  |  |  |
| 49. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | В                | OBJ:     | 9-6                | NAT: C1   C5   G1                                                                |  |  |  |  |  |
|     | They require energy. inorganic phosphate.                                                                                                                                                         |                                                                                                                                                                                                                                                    | ergy available   | for eacl | n activity is rele | eased by the breakdown of ATP to ADP and                                         |  |  |  |  |  |
| 50  | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | В                | OBJ:     | 9-1                | NAT: C1   C5                                                                     |  |  |  |  |  |
|     | Because the bromothymol in the control was still yellow, the $CO_2$ did not leak out of the test tubes. Therefore, in the other two test tubes, the <i>Elodea</i> must have taken in the $CO_2$ . |                                                                                                                                                                                                                                                    |                  |          |                    |                                                                                  |  |  |  |  |  |
| 51. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-3                | NAT: C1   C5   G1                                                                |  |  |  |  |  |
|     | Fermentation yields                                                                                                                                                                               |                                                                                                                                                                                                                                                    |                  |          |                    | elds a net gain of two ATP molecules, and of ATP, fermentation must produce zero |  |  |  |  |  |
| 52. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-6                | NAT: C1   C5   G1                                                                |  |  |  |  |  |
|     | 36 molecules                                                                                                                                                                                      |                                                                                                                                                                                                                                                    |                  |          |                    |                                                                                  |  |  |  |  |  |
| 53. | PTS: 1<br>ANS:                                                                                                                                                                                    | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-7                | NAT: C1   C5                                                                     |  |  |  |  |  |
|     | Glycolysis, 2; acetyl-                                                                                                                                                                            | -CoA p                                                                                                                                                                                                                                             | roduction, a los | s of 2;  | citric acid cycle  | e, 2; electron transport chain, 34                                               |  |  |  |  |  |
|     | PTS: 1                                                                                                                                                                                            | DIF:                                                                                                                                                                                                                                               | A                | OBJ:     | 9-7                | NAT: C1   C5                                                                     |  |  |  |  |  |
|     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                  |          |                    |                                                                                  |  |  |  |  |  |

| 54.                                                                                                                                            |                                                                                                              | is hypothesis wed that they do    |         | various colors   | of light | affect the rate  | of photosynthesis differently, and he           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|------------------|----------|------------------|-------------------------------------------------|--|--|--|
| 55.                                                                                                                                            | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                | Answers will vary. He could have exposed one test tube to white light and left another in complete darkness. |                                   |         |                  |          |                  |                                                 |  |  |  |
| 56.                                                                                                                                            | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                | the dif                                                                                                      | ferent colors of                  | light   |                  |          |                  |                                                 |  |  |  |
| 57.                                                                                                                                            | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                | He wo                                                                                                        | ould conclude the photosynthesis. |         | et light and red | light a  | re the most effe | ective colors of the spectrum in bringing       |  |  |  |
| 58.                                                                                                                                            | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                |                                                                                                              |                                   | to det  | ermine oxygen    | conten   | t, and anaerobio | c bacteria do not require oxygen for their life |  |  |  |
| 59.                                                                                                                                            | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-6              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                | Becau                                                                                                        | se oxygen is a psynthesis.        | product | of photosynthe   | esis, he | reasoned that n  | more oxygen indicated a greater rate of         |  |  |  |
| 60                                                                                                                                             | PTS:<br>ANS:                                                                                                 | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
| No; the purpose was to determine whether different colors of light affected the production of oxygen and therefore the rate of photosynthesis. |                                                                                                              |                                   |         |                  |          |                  |                                                 |  |  |  |
|                                                                                                                                                | PTS:                                                                                                         | 1                                 | DIF:    | A                | OBJ:     | 9-3              | NAT: C1   C5   G1                               |  |  |  |
|                                                                                                                                                |                                                                                                              |                                   |         |                  |          |                  |                                                 |  |  |  |
|                                                                                                                                                |                                                                                                              |                                   |         |                  |          |                  |                                                 |  |  |  |
|                                                                                                                                                |                                                                                                              |                                   |         |                  |          |                  |                                                 |  |  |  |
|                                                                                                                                                |                                                                                                              |                                   |         |                  |          |                  |                                                 |  |  |  |