
Q1W5- Bio12-Qs Bank

True/False

Indica	ite wh	nether the statement is true or false.										
	1.	In a water molecule, electrons are shared equ	ally b	etween the hydrogen atoms and oxygen atom.								
	2.	The attraction of opposite charges between hydrogen and oxygen forms a weak oxygen bond.										
	3.	Because of its polarity, water can move from the roots of a plant up to its leaves.										
	4.	Water changes temperature easily.										
	5.	Unlike most substances, water expands when it freezes.										
	6.	Carbon atoms can bond together in straight chains, branched chains, or rings.										
	7.	Large molecules containing carbon atoms are called micromolecules.										
	8.	Polymers are formed by hydrolysis.										
	9.	Cells use carbohydrates for energy.										
Multi Identij	-	Choice choice that best completes the statement or ar	ıswer	s the question.								
	10.	All objects in motion have										
		a. potential energy.		kinetic energy.								
	1.1	b. heat energy.		random energy.								
	11.	The first scientist to observe evidence of the a. Brown.		m motion of molecules was Mendel.								
		b. Darwin.		Hooke.								
	12.			ner concentration to an area of lower concentration is called								
		a. dynamic equilibrium.	_	concentration gradient.								
		b. nonrandom movement.	d.	diffusion.								
	13.	Diffusion occurs because of										
		a. nonrandom movement of particles.		a chemical reaction between particles.								
		b. random movement of particles.		chemical energy.								
	14.	When a few drops of colored corn syrup are a										
		a. move from low concentration to high corb. form a polar bond.	icentra	ation.								
		c. start to diffuse.										
		d. remain on the bottom of the beaker.										
	15.	Diffusion can be accelerated by										
		a. decreasing the pressure.	c.	decreasing the movement of particles.								
		b. increasing the temperature.	d.	increasing the dynamic equilibrium.								
	16.		equal	rates, there is no net change in concentration inside the								
		cell. The cell is in a state of	_	imbolonoo								
		a. dynamic equilibrium.b. metabolism.		imbalance. inertia.								
	17											
	17.	a dynamic equilibrium		diffusion								

	b. concentration gradient.	d.	Brownian movement.
18.	Which of the following compounds may be po	olymo	ers?
	a. carbohydrates	-	proteins
	b. nucleic acids	d.	all of these
19.	Which of the following does NOT describe a	nolvi	mer?
 17.	a. Polymers are made of monomers.	porji	
	b. Polymers are large molecules.		
	c. Polymers usually form by covalent bonding	۱ø.	
	d. Polymers are broken down by the process		vdrogenation.
20.	Carbon compounds that come from living org		
 20.	a. water	C.	•
	b. organic	d.	biological
21.	How many electrons can a carbon atom share		olological
 21.	•		three
	a. one b. two	c. d.	four
22			Tour
 22.	Which of the following is a chemical reaction	!	
	a. tearing paper into strips		
	b. burning paper		
	c. picking up iron filings with a magnet		
22	d. mixing salt and sugar in the same contained		
 23.	represents a formula for a chemical cor	_	
	a. H		P
	b. C	a.	H_2O
 24.	The nucleus of an atom contains		
	a. protons and neutrons	c.	r
	b. neutrons and electrons		protons, neutrons, and electrons
 25.	Electrons move about the nucleus of an atom	in reg	gions called
	a. electron clouds	c.	air
	b. nuclei	d.	isotopes
 26.	What are the basic building blocks of proteins	?	
	a. nucleic acids	c.	amino acids
	b. peptide bonds	d.	glycerol and fatty acids
 27.	Water dissolves many ionic and molecular con	mpou	inds because of its
	a. ionic bonding	c.	covalent bonding
	b. polarity	d.	hydrogen bonding
 28.	When molecules of glucose and fructose comb	oine 1	to form sucrose, they do so by
	a. hydrolysis		condensation
	b. electron clouds	d.	radiation
29.	A chlorine atom becomes a chloride ion when	it	
	a. gains an electron		gains a neutron
	b. loses an electron		loses a proton
30	The various enzymes in our bodies are		
 50.	a. lipids	c.	nucleotides
	b. carbohydrates		proteins
31.	Glucose and fructose, with the formula C_6H_{12}		•
 51.	a. numbers of atoms		kinds of atoms
	b. arrangement of atoms	d.	
22		u.	arrangement of electrons
 32.	A very strong base might have a pH of		

Figure 6-5

a. carbon

c. oxygen

b. hydrogen

d. phosphorus

Short Answer

- 43. Explain how polymers may be broken down in living things.
- 44. Explain how polymers may be made in living things.
- 45. Explain the importance of carbon's ability to form covalent bonds in straight chains, branched chains, or rings.
- 46. Why is the polar property of water important?
- 47. Explain how sodium and chlorine combine to form a stable compound in a chemical reaction.
- 48. Explain how isotopes can be utilized in medicine.
- 49. In the chemical reaction $6\text{CO}_2 + 12\text{H}_2\text{O} + \text{sunlight} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$, 6 molecules of carbon dioxide are represented by ______.
- 50. In the chemical reaction $6CO_2 + 12H_2O + \text{sunlight} \rightarrow C_6H_{12}O_6 + 6O_2 + 6H_2O$, 1 molecule of sugar is represented by ______.
- 51. In the chemical reaction $6\text{CO}_2 + 12\text{H}_2\text{O} + \text{sunlight} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$, 1 molecule of oxygen that contains two atoms is represented by ______.

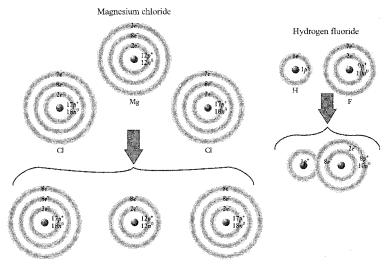


Figure 6-1

- 52. Which compound shown in Figure 6-1 is formed by covalent bonding? Explain.
- 53. Which compound shown in Figure 6-1 is formed by ionic bonding? Explain.

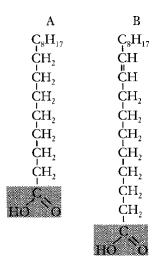


Figure 6-2

- 54. In most lipids, compounds like A and B of Figure 6-2 are attached to what 3-carbon molecule?
- 55. Classify A and B of Figure 6-2 as either saturated or unsaturated. Explain.
- 56. What types of biological compounds are A and B of Figure 6-2?

Table 6-1									
Indicator	Color at lower pH values	pH range of color transition	Color at higher pH values						
Methyl red	Red	4.4–6.0	Yellow						
Litmus	Red	5.5-8.0	Blue						
Bromothymol blue	Yellow	6.0–7.6	Blue						
Phenol red	Yellow	6.8–8.4	Red						
Phenolphthalein	Colorless	8.3–10.0	Red						

- 57. If you exhale carbon dioxide (CO₂) into a solution of bromothymol blue, the solution turns from blue to yellow. Does CO₂ dissolve in water to form an acid or a base? Use Table 6-1 of acid-base indicators to answer.
- 58. Refer to Table 6-1 of acid-base indicators. A small volume of dilute hydrochloric acid is placed in a beaker, and two drops of phenolphthalein are added. The solution remains colorless. A dilute solution of sodium hydroxide is then added drop by drop until a color change occurs. In what pH range does the color change occur? Describe the color change that occurs.

Two students carry out an investigation to determine the action of the enzyme pepsin on protein digestion in the human stomach. They know that gastric juice in the stomach contains water, pepsin, and hydrochloric acid. They decide to use small, equal-sized pieces of cooked egg white as the protein to be digested.

They set up four test tubes and place equal, small amounts of egg white in each test tube. Then they fill each test tube with a different liquid to a height of 3 cm. To test tube 1 they add water, to test tube 2 they add dilute hydrochloric acid (HCl), to test tube 3 they add pepsin in water, and to test tube 4 they add pepsin and dilute hydrochloric acid. They place the four test tubes in an incubator set at 37°C (body temperature).

After one day, they observe the results. They return the test tubes to the incubator and observe them again the next day. Table 6-2 is the record of the results.

	Table 6-2										
	Test tube	1 day	2 days								
1.	egg + water	no change	no change								
2.	egg + HCl	no change	no change								
3.	egg + pepsin	liquid slightly cloudy, egg white solid	liquid cloudy, egg white still solid								
4.	egg + pepsin + HCl	liquid cloudy, pieces of egg smaller	liquid very cloudy, almost no egg remains								

- 59. Write a conclusion to the experiment. Base your conclusion on the experimental results shown in Table 6-2.
- 60. Was the hypothesis correct? Why?
- 61. From the experiment, does HCl digest protein? How do you know?
- 62. Which test tube is the control? Explain its purpose.
- 63. Which test tube or tubes are the experimental group? Why do you say so?
- 64. Imagine that a bottle of perfume is opened at the back of a classroom. Explain how your teacher can detect the odor on the other side of the room within a few minutes.

Completion

Complete each statement.

	Using the choices below, choose the	type of substance described.	
	compound	element	
65.	H ₂ O, a liquid that no longer resembles	either hydrogen or oxygen gas.	
66.	A substance that can be broken down	in a chemical reaction.	
67.	Carbon, the substance represented by t	the symbol C	_
68.	An organic compound with a ratio of a is a(n)	about two hydrogen atoms and one oxy	ygen atom for each carbon atom
69.	The smaller subunits that make up nuc	eleic acids are	_•
70.	Any substance that forms hydrogen io	ns in water is a(n)	.
71.	Two atoms that share electrons are hel	d together by	_ bonds.
72.	Atoms of the same element with differ	ent numbers of neutrons are	

Matching

	Match each item with the correct statement bela. cellulose b. polar molecule c. nucleus	ow. e. f. g.	polymer solution enzyme
	d. peptide bond	h.	metabolism
 73.	glucose polymer that forms the cell walls of pla	ants	
 74.	large molecule formed when many smaller mol	lecu	les bond together
 75.	molecule with unequal distribution of charge		
 76.	protein that speeds up a chemical reaction		
 77.	bond formed between amino acids		
 78.	all the chemical changes that occur within an o	rgan	nism
 79.	mixture in which one substance is distributed e	venl	ly in another
 80.	center of an atom		

Q1W5- Bio12-Qs Bank Answer Section

TRUE/FALSE

1.	ANS:	F	PTS:	1
2.	ANS:	F	PTS:	1
3.	ANS:	T	PTS:	1
4.	ANS:	F	PTS:	1
5.	ANS:	T	PTS:	1
6.	ANS:	T	PTS:	1
7.	ANS:	F	PTS:	1
8.	ANS:	F	PTS:	1
9.	ANS:	T	PTS:	1

MULTIPLE CHOICE

10.	ANS: C	PTS:	1				
11.	ANS: A	PTS:	1				
12.	ANS: D	PTS:	1				
13.	ANS: B	PTS:	1				
14.	ANS: C	PTS:	1				
15.	ANS: B	PTS:	1				
16.	ANS: A	PTS:	1				
17.	ANS: B	PTS:	1				
18.	ANS: D	PTS:	1	DIF:	В	OBJ:	6-9
	NAT: C5 G1 G3						
19.	ANS: D	PTS:	1	DIF:	В	OBJ:	6-8
	NAT: C5 G1						
20.	ANS: B	PTS:	1	DIF:	В	OBJ:	6-7
	NAT: C5 G1						
21.	ANS: D	PTS:	1	DIF:	В	OBJ:	6-7
	NAT: C5 G1	D.T.G			_	0.77	
22.	ANS: B	PTS:	1	DIF:	В	OBJ:	6-2
22	NAT: C5 G1 G2	DEC	1	DIE	D	ODI	
23.	ANS: D	PTS:	1	DIF:	В	OBJ:	6-2
24	NAT: C5 G1 G2	DTC.	1	DIE.	D	ODI.	<i>c</i> 1
24.	ANS: A NAT: C5 G1 G2	PTS:	1	DIF:	В	OBJ:	0-1
25	ANS: A	PTS:	1	DIF:	D	OBJ:	6.1
23.	NAT: C5 G1 G2	ris.	1	DII.	Б	ODJ.	0-1
26	ANS: C	PTS:	1	DIF:	R	OBJ:	6-9
20.	NAT: C5 G1 G3	1 15.	1	DII.	Ь	ODJ.	0-7
27	ANS: B	PTS.	1	DIF:	R	OBJ:	6-5
27.	NAT: C5 G1	1 10.	•	υп.	2	ODU.	5.5
28.	ANS: C	PTS:	1	DIF:	В	OBJ:	6-8

	NAT: C5 G1						
29.	ANS: A	PTS:	1	DIF:	В	OBJ:	6-2
	NAT: C5 G1 G2						
30.	ANS: D	PTS:	1	DIF:	В	OBJ:	6-10
	NAT: C1						
31.	ANS: B	PTS:	1	DIF:	В	OBJ:	6-7
	NAT: C5 G1						
32.	ANS: D		1	DIF:	В	OBJ:	6-4
	NAT: C5 G1 G2				_		
33.	ANS: A		1	DIF:	В	OBJ:	6-1
2.4	NAT: C5 G1 G2		1	DIE	D	ODI	<i>c</i> 0
34.	ANS: D		1	DIF:	В	OBJ:	6-9
25	NAT: C5 G1 G3 ANS: C		1	DIE.	В	OBJ:	<i>c</i> 1
	NAT: C5 G1 G2		1	DIF.	Б	Obj.	0-1
	ANS: B		1	DIF:	R	OBJ:	6-9
50.	NAT: C5 G1 G3		1	DII.	Ь	ODJ.	0-7
37	ANS: A		1	DIF.	В	OBJ:	6-9
57.	NAT: C5 G1 G3	110.	•	211.	2	OBU.	0)
38.	ANS: C	PTS:	1	DIF:	В	OBJ:	6-6
	NAT: C5 G1 G3						
39.	ANS: B	PTS:	1	DIF:	В	OBJ:	6-6
	NAT: C5 G1 G3						
40.	ANS: B		1	DIF:	В	OBJ:	6-2
	NAT: C5 G1 G2						
41.	ANS: C		1	DIF:	A	OBJ:	6-4
	NAT: C5 G1 G2						
	ANS: B		1	DIF:	A	OBJ:	6-9
	NAT: C5 G1 G3						

SHORT ANSWER

43. ANS:

Polymers may be broken down by hydrolysis, the reverse of condensation. Hydrogen is added to one part of the molecule, and hydroxide is added to another. This separates the two into smaller molecules, eventually forming monomers.

PTS: 1 DIF: A OBJ: 6-8 NAT: C5 | G1

44. ANS:

Polymers may be formed from a variety of monomers by condensation. Condensation is the combining of a hydrogen atom from one monomer with a hydroxide from a second monomer, forming water. As the water is formed, the two monomers are linked.

PTS: 1 DIF: A OBJ: 6-8 NAT: C5 | G1

45. ANS:

Carbon's ability to form covalent bonds is important in allowing for a wide variety of organic molecules. Living things require such a variety to carry out life processes.

PTS: 1 DIF: A OBJ: 6-7 NAT: C5 | G1

46.	ANS: Answer	•	: Polari	ity allows water	to diss	solve many mat	terials but not react with them chemically in		
47.	PTS: ANS:	1	DIF:	A	OBJ:	6-5	NAT: C5 G1		
				e one electron. (vionic bonding,			ach gain one electron. When sodium le is stable.		
48.	PTS: ANS:		DIF:		OBJ:		NAT: C5 G1 G2		
		_				-	ase, such as measuring the function of the reat some diseases such as cancer.		
49.	PTS: ANS: 6CO ₂	1	DIF:	A	OBJ:	6-4	NAT: C5 G1 G2		
50.	PTS: ANS: C ₆ H ₁₂ C		DIF:	A	OBJ:	6-2	NAT: C5 G1 G2		
51.	PTS: ANS: O ₂	1	DIF:	A	OBJ:	6-7	NAT: C5 G1		
52.	PTS: ANS:	1	DIF:	A	OBJ:	6-2	NAT: C5 G1 G2		
	•	gen fluoride; it n hydrogen flu		•	bondin	g because two	electrons, one from each atom, are shared		
53.	PTS: ANS:	1	DIF:	В	OBJ:	6-2	NAT: C5 G1 G2		
	Magnesium chloride; it is formed by ionic bonding because two electrons are transferred from the magnesium atom, one to each chlorine atom, to form two chloride ions and one magnesium ion.								
54.	PTS: ANS: glycero		DIF:	В	OBJ:	6-2	NAT: C5 G1 G2		
55.	PTS: ANS:	1	DIF:	В	OBJ:	6-9	NAT: C5 G1 G3		
		turated because	e it con	tains only single	e bonds	s. B is unsatura	ted because it contains a double bond.		
56.	PTS: ANS: fatty ac		DIF:	В	OBJ:	6-9	NAT: C5 G1 G3		
57.	PTS: ANS:	1	DIF:	В	OBJ:	6-9	NAT: C5 G1 G3		

	an acid					
58.	PTS: 1 ANS: 8.3-10.0; colorless to	DIF:	В	OBJ:	6-4	NAT: C5 G1 G2
59.	PTS: 1 ANS: Pepsin digests the prodigestion of the prot		egg white sligl			NAT: C5 G1 G2 re. In the presence of the acid, HCl, the
60.	PTS: 1 ANS: Yes; pepsin digested	DIF:		OBJ:		NAT: C5 G1 esence of HCl.
61.	PTS: 1 ANS: No; HCl alone did n	DIF:		OBJ:		NAT: C5 G1
62.			e it contains the		hite but none o	NAT: C5 G1 f the experimental substances. It is important experimental substances.
63.	PTS: 1 ANS: Test tubes 2, 3, and	DIF: 4. They		OBJ:		NAT: C5 G1 nter believes might affect egg white.
64.		of lesser	Fume enter the a	in the r	diffuse from a oom. As the mo	NAT: C5 G1 n area of greater concentration near the olecules continue to diffuse, the the odor.
	PTS: 1	DIF:	A	OBJ:	6-6	NAT: C5 G1 G3
IPLE'	TION					
65.	ANS: compound					

COM

PTS: 1

66. ANS: compound

PTS: 1

67. ANS: element

PTS: 1

68. ANS: carbohydrate

69.		1 nucleotides	DIF:	В	OBJ:	6-9	NAT:	C5 G1 G3
70.	PTS: ANS:	1 acid	DIF:	В	OBJ:	6-9	NAT:	C5 G1 G3
71.		1 covalent	DIF:	В	OBJ:	6-4	NAT:	C5 G1 G2
72.		1 isotopes	DIF:	В	OBJ:	6-2	NAT:	C5 G1 G2
	PTS:	1	DIF:	В	OBJ:	6-1	NAT:	C5 G1 G2
MATCHI	NG							
73.		A C5 G1 G3	PTS:	1	DIF:	В	OBJ:	6-9
74.	ANS:		PTS:	1	DIF:	В	OBJ:	6-8
75.	ANS:	•	PTS:	1	DIF:	В	OBJ:	6-2
76.	ANS: NAT:		PTS:	1	DIF:	В	OBJ:	6-10
77.	ANS:		PTS:	1	DIF:	В	OBJ:	6-8
78.	ANS:	•	PTS:	1	DIF:	В	OBJ:	6-8
79.	ANS:	F C5 G1 G2	PTS:	1	DIF:	В	OBJ:	6-3
80.	ANS:	C C G1 G2 C C5 G1 G2	PTS:	1	DIF:	В	OBJ:	6-1