Interactive Classroom

Graw Glencoe

 $\mathbb{D}(0)(0)2$

Click the advance arrow or press the space bar to continue

Glencoe Science

Copyright © by The McGraw-Hill Companies, Inc

Section 1: Population Dynamics

Section 2: Human Population

EXIT

- **4.1 Population Dynamics**
 - Population Density
 - The number of organisms per unit area
 - **Spatial Distribution**
 - Dispersion is the pattern of spacing of a population.

Population Ecology

- **4.1 Population Dynamics**
 - **Population Ranges**
 - A species might not be able to expand its population range because it cannot survive the abiotic conditions found in the expanded region.

Home

Resources

Common dolphin

Population-Limiting Factors

 There are two categories of limiting factors density-independent factors and densitydependent factors.

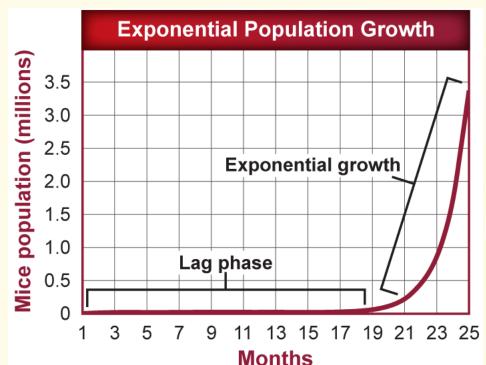
Density-Independent Factors

- Any factor in the environment that does not depend on the number of members in a population per unit area is a densityindependent factor.
 - Weather events
 - Fire
 - Human alterations of the landscape
 - Air, land, and water pollution

Density-Dependent Factors

- Any factor in the environment that depends on the number of members in a population per unit area is a density-dependent factor.
 - Biotic factors
 - Disease
 - Competition
 - Parasites

- **4.1 Population Dynamics**
- **Population Growth Rate**
- The population growth rate (PGR) explains how fast a given population grows.
- The natality of a population is the birthrate in a given time period.

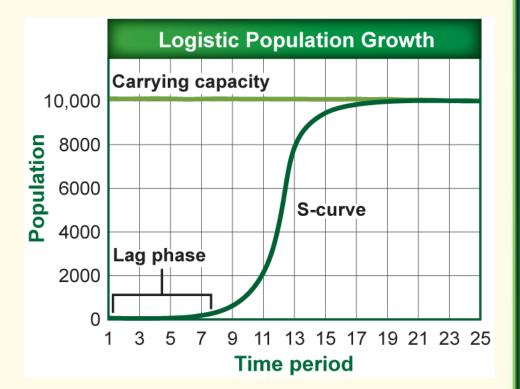


Exponential Growth Model

- Exponential growth occurs when the growth rate is proportional to the size of the population.
- All populations grow
 I 3 5 7 9 11 13 15 17
 Months
 Some limiting factor slows the population's growth.

Home

Resources



Population Ecology

4.1 Population Dynamics

Logistic Growth Model

 The population's growth slows or stops following exponential growth, at the population's carrying capacity.

 A population stops increasing when the number of births is less than the number of deaths or when emigration exceeds immigration.

Characteristics Of Population Growth

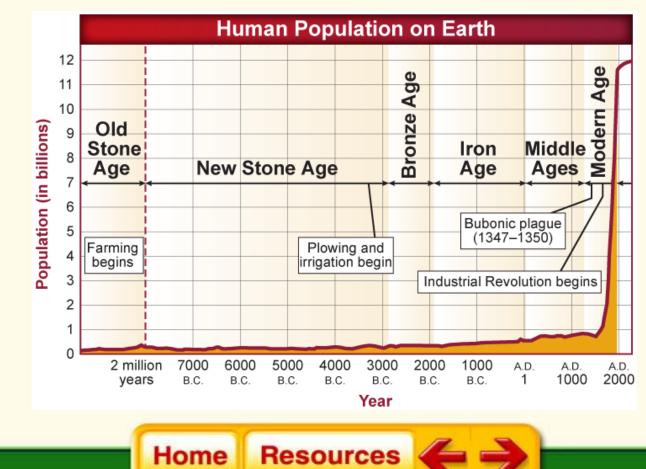
Carrying Capacity

- The maximum number of individuals in a species that an environment can support for the long term is the carrying capacity.
- Carrying capacity is limited by the energy, water, oxygen, and nutrients available.

Reproductive Patterns

Species of organisms vary in the number of births per reproduction cycle, in the age that reproduction begins, and in the life span of the organism.

- The rate strategy, or *r*-strategy, is an adaptation for living in an environment where fluctuation in biotic or abiotic factors occur.
- An *r*-strategist is generally a small organism.
- Short life span
- Produces many offspring

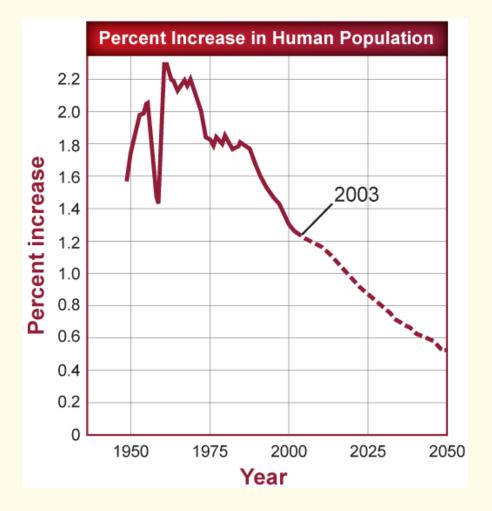

- The carrying-capacity strategy, or k-strategy, is an adaptation for living in stable environments.
- A *k*-strategist is generally a larger organism.
- Long life span
- Produces few offspring

4.2 Human Population

Human Population Growth

The study of human population size, density, distribution, movement, and birth and death rates is demography.

Technological Advances


- For thousands of years, environmental conditions kept the size of the human population at a relatively constant number below the environment's carrying capacity.
- Humans have learned to alter the environment in ways that appear to have changed its carrying capacity.

4.2 Human Population

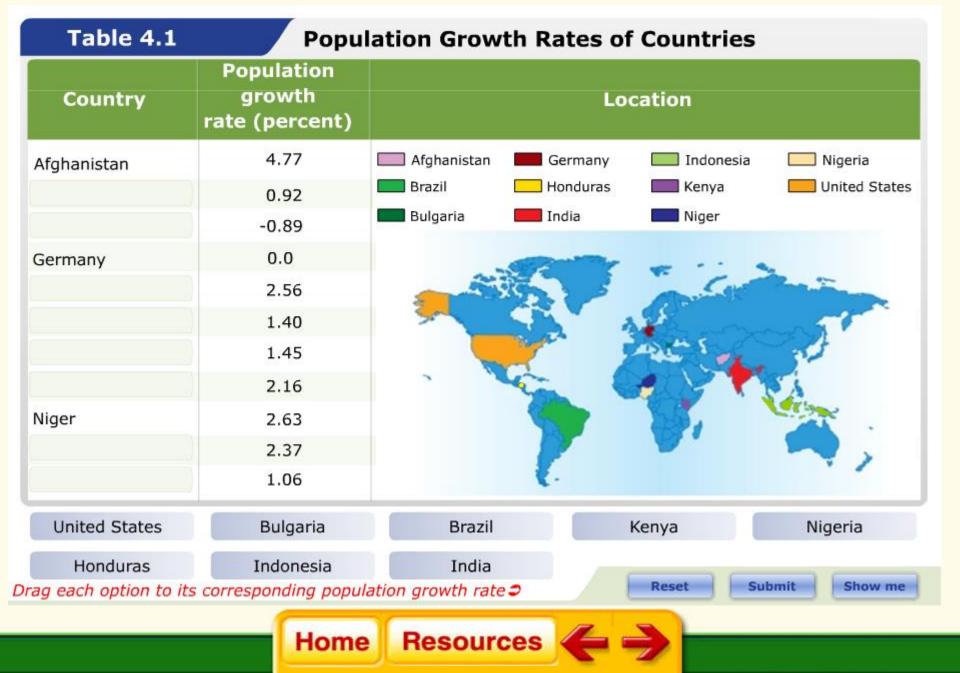
Human Population Growth Rate

 Although the human population is still growing, the rate of its growth has slowed.

4.2 Human Population

Trends in Human Population Growth

 Population trends can
 be altered by
 events such
 as disease
 and war.

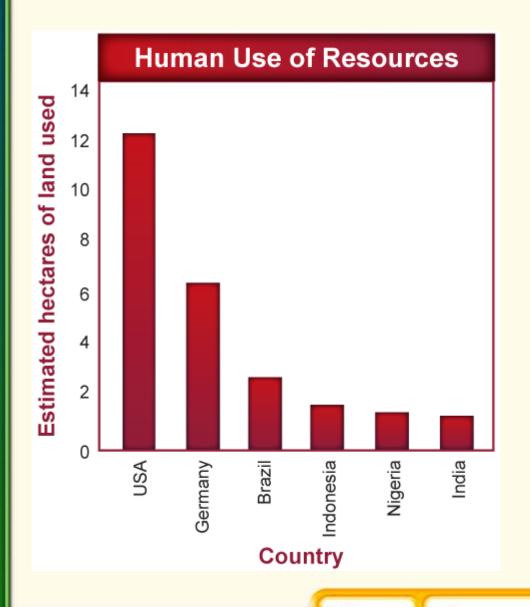

Human

population growth is not the same in all countries.

Home Resources

COncepts In MOtion

- Zero Population Growth
- Zero population growth (ZPG) occurs when the birthrate equals the death rate.
- The age structure eventually should be more balanced with numbers at pre-reproductive, reproductive, and post-reproductive ages being approximately equal.


Age Structure

 A population's age structure is the number of males and females in each of three age groups: pre-reproductive

Age Structure in Human Populations								
	Rapid Growth (Kenya)		Slow Growth (United States)			Negative Growth (Germany)		
Male	Female	Age	Male	Female	Year of Birth	Male	Female	
Post-reproductive		80+			Before 1915			
		75-79			1915-1919			
		70-74			1920-1924			
		65-69			1925-1929			
		60-64			1930-1934			
		55-59			1935-1939			
		50-54			1940-1944			
		45-49			1945-1949			
		40-44			1950-1954			
Reproductive		35-39			1955-1959			
		30-34			1960-1964			
		25-29			1965-1969			
		20-24			1970-1974			
		15-19			1975-1979			
		10-14			1980-1984			
Pre-reproductive		5-9			1985-1989			
		0-4			1990-1994			
		10						
10 8 6 4 2 0 2 4 6 8 10 6 4 2 0 2 4 6 6 4 2 0 2 4 6 Percent of population Percent of population Percent of population								
Percent of population Percent of population Percent of population								

pre-reproductive stage, reproductive stage, and post-reproductive stage.

Human Carrying Capacity

- Scientists are concerned about the human population reaching or exceeding the carrying capacity.
- An important factor is the amount of resources from the biosphere that are used by each person.

Resources

Home

Population Ecology

Chapter Resource Menu

Chapter Diagnostic Questions

Formative Test Questions

CheckPoint

CheckPoint

Chapter Assessment Questions

CheckPoint

Biology

Standardized Test Practice

biologygmh.com

Glencoe Biology Transparencies

Vocabulary

Image Bank

COncepts In MOtion

<u>Animation</u>

Click on a hyperlink to view the corresponding lesson.

Chapter Diagnostic Questions

What term is used to describe the number of individuals moving into a population?

A. emigration
B. imitation
C. immigration
D. migration

Chapter Diagnostic Questions

What is population density?

A. pattern of spacing of a population in an area
B. number of organisms in an area
C. characteristics of a population
D. manner in which a population grows

Chapter Diagnostic Questions

When does zero population growth occur?

A. when birth rate equals death rate
B. when death rate exceeds birth rate
C. when birth rate exceeds death rate
D. when there are zero births

4.1 Formative Questions

Which is a density-dependent factor?

A. disease
B. fire
C. flooding
D. weather

4.1 Formative Questions

Which is a density-independent factor?

A. competition
B. extreme cold
C. parasites
D. predation

4.1 Formative Questions

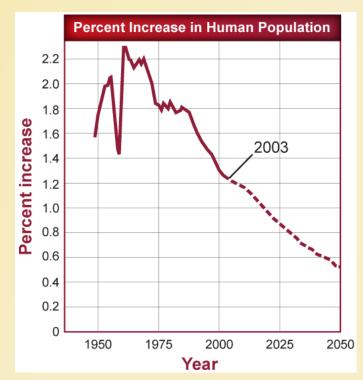
Which factor can limit the carrying capacity of a population?

A. emigration
B. predation
C. available nutrients
D. extreme temperatures

4.2 Formative Questions

The study of the size, density, distribution, and movement of the human population is _____.

A. bioinformatics
B. demography
C. ecology
D. ethnography



4.2 Formative Questions

Which is a primary reason for the decline in the percent growth of the human population after 1962?

A. decreased agriculture
B. famine and wars
C. setbacks in medicine
D. voluntary population control

4.2 Formative Questions

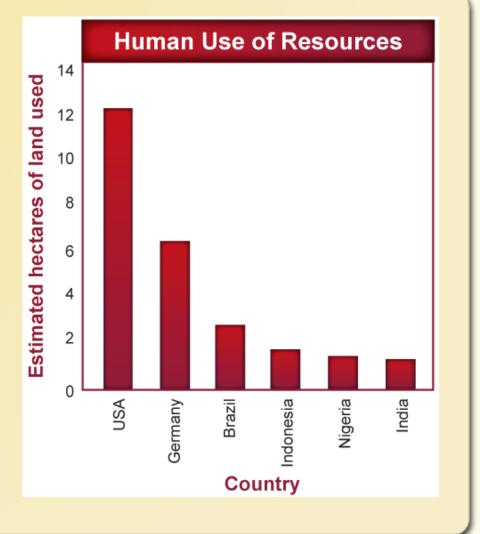
What will happen to the human population when the birthrate equals the death rate?

A. CDC B. HPG C. PGR D. ZPG

Chapter Assessment Questions

Which type of population growth model does this graph represent?

A. exponential
B. spatial
C. genetic
D. logistic



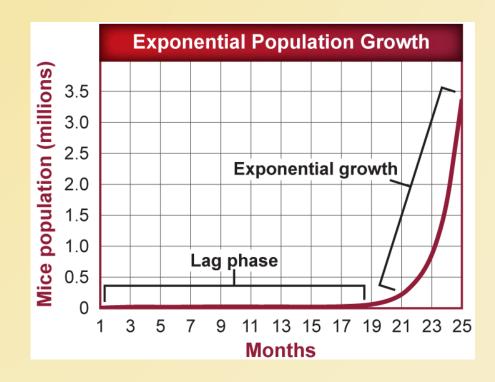
Chapter Assessment Questions

Based on the information in the graph, infer which statement accurately represents the information provided.

Home Resources

Chapter Assessment Questions

A. India has very little land for farming.


- B. Germany is smaller per acre than the United States.
- C. More land is used to support an individual in the United States.
 - D. A person in Indonesia requires more land than a person in Brazil.

Chapter Assessment Questions

Use the graph to explain the growth of the mice population.

Home Resources

Chapter Assessment Questions

Answer: If two adult mice breed and produce a litter and their offspring survive to breed, then the population grows slowly at first. This slow growth is defined as the lag phase. The rate of population growth begins to increase rapidly because the total number of organisms that are able to reproduce has increased. Exponential growth occurs when the growth rate is proportional to the size of the population. All populations grow exponentially until some limiting factor slows the population's growth.

Standardized Test Practice

An ecologist estimates a population density of 2.3 lemmings per square meter of tundra. What would be the approximate number of lemmings over 1000 square meters of tundra?

A. 0.23 B. 23 C. 230 D. 2300

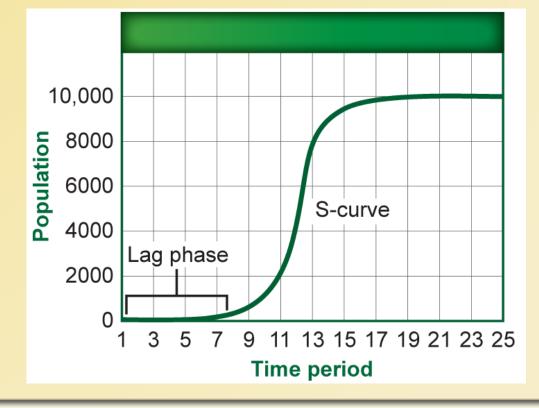
Standardized Test Practice

The ecologist finds that over a 1000m² plot of tundra, lemmings tend to concentrate in clumps in drier areas. What is the term for this pattern of spacing?

A. density
B. dispersion
C. logistic spacing
D. spatial distribution

Standardized Test Practice

Brine shrimp are able to survive only in certain lakes that have a very high salt concentration. Which is the correct population characteristic of brine shrimp?


- A. It is density-dependent.
- B. It is limited by biotic factors.
- C. It has a limited spatial distribution.
- D. It is randomly dispersed in the environment.

Standardized Test Practice

Why does the population growth level off at 10,000?

Home Resources (

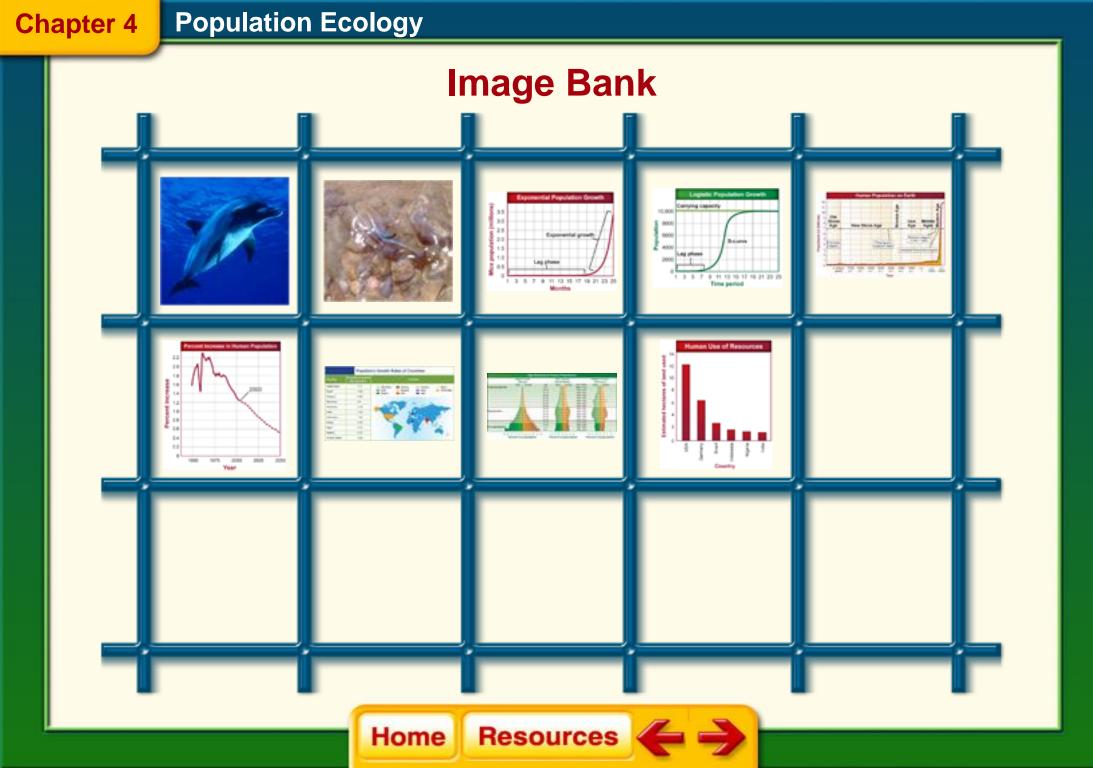
Standardized Test Practice

A. Biotic factors have made survival difficult.
 B. The population has reached its carrying capacity.
 C. Density-independent factors have slowed the growth of the population.

D. Immigration into the population has reached the maximum limit.

Standardized Test Practice

Which organism is the best example of a *k*-strategist?


A. wolf B. grasshopper C. rabbit D. whale

Population Ecology

Glencoe Biology Transparencies

Vocabulary

Section 1

- sopulation density
 - dispersion
 - density-independent factor
- density-dependent
 - factor
- - population growth rate

emigration
immiaratio

- immigration
- Carrying capacity

Vocabulary

Section 2

- demography
- demographic transition
- zero population growth (ZPG)
- age structure

Animation

- Visualizing Population Characteristics
- Characteristics of Population Growth

